MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf2nd Structured version   Visualization version   GIF version

Theorem resf2nd 16378
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
resf2nd.x (𝜑𝑋𝑆)
resf2nd.y (𝜑𝑌𝑆)
Assertion
Ref Expression
resf2nd (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))

Proof of Theorem resf2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 6552 . 2 (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩)
2 resf1st.f . . . . . 6 (𝜑𝐹𝑉)
3 resf1st.h . . . . . 6 (𝜑𝐻𝑊)
42, 3resfval 16375 . . . . 5 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
54fveq2d 6107 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
6 fvex 6113 . . . . . 6 (1st𝐹) ∈ V
76resex 5363 . . . . 5 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
8 dmexg 6989 . . . . . 6 (𝐻𝑊 → dom 𝐻 ∈ V)
9 mptexg 6389 . . . . . 6 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
103, 8, 93syl 18 . . . . 5 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
11 op2ndg 7072 . . . . 5 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
127, 10, 11sylancr 694 . . . 4 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
135, 12eqtrd 2644 . . 3 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
14 simpr 476 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1514fveq2d 6107 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩))
16 df-ov 6552 . . . . 5 (𝑋(2nd𝐹)𝑌) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩)
1715, 16syl6eqr 2662 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = (𝑋(2nd𝐹)𝑌))
1814fveq2d 6107 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
19 df-ov 6552 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2018, 19syl6eqr 2662 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
2117, 20reseq12d 5318 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
22 resf2nd.x . . . . 5 (𝜑𝑋𝑆)
23 resf2nd.y . . . . 5 (𝜑𝑌𝑆)
24 opelxpi 5072 . . . . 5 ((𝑋𝑆𝑌𝑆) → ⟨𝑋, 𝑌⟩ ∈ (𝑆 × 𝑆))
2522, 23, 24syl2anc 691 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑆 × 𝑆))
26 resf1st.s . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
27 fndm 5904 . . . . 5 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
2826, 27syl 17 . . . 4 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
2925, 28eleqtrrd 2691 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
30 ovex 6577 . . . . 5 (𝑋(2nd𝐹)𝑌) ∈ V
3130resex 5363 . . . 4 ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V
3231a1i 11 . . 3 (𝜑 → ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V)
3313, 21, 29, 32fvmptd 6197 . 2 (𝜑 → ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
341, 33syl5eq 2656 1 (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131  cmpt 4643   × cxp 5036  dom cdm 5038  cres 5040   Fn wfn 5799  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  f cresf 16340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-2nd 7060  df-resf 16344
This theorem is referenced by:  funcres  16379
  Copyright terms: Public domain W3C validator