MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf2nd Structured version   Unicode version

Theorem resf2nd 14810
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f  |-  ( ph  ->  F  e.  V )
resf1st.h  |-  ( ph  ->  H  e.  W )
resf1st.s  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
resf2nd.x  |-  ( ph  ->  X  e.  S )
resf2nd.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
resf2nd  |-  ( ph  ->  ( X ( 2nd `  ( F  |`f  H ) ) Y )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )

Proof of Theorem resf2nd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 6099 . 2  |-  ( X ( 2nd `  ( F  |`f  H ) ) Y )  =  ( ( 2nd `  ( F  |`f  H ) ) `  <. X ,  Y >. )
2 resf1st.f . . . . . 6  |-  ( ph  ->  F  e.  V )
3 resf1st.h . . . . . 6  |-  ( ph  ->  H  e.  W )
42, 3resfval 14807 . . . . 5  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)
54fveq2d 5700 . . . 4  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  =  ( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
) )
6 fvex 5706 . . . . . 6  |-  ( 1st `  F )  e.  _V
76resex 5155 . . . . 5  |-  ( ( 1st `  F )  |`  dom  dom  H )  e.  _V
8 dmexg 6514 . . . . . 6  |-  ( H  e.  W  ->  dom  H  e.  _V )
9 mptexg 5952 . . . . . 6  |-  ( dom 
H  e.  _V  ->  ( z  e.  dom  H  |->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
103, 8, 93syl 20 . . . . 5  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
11 op2ndg 6595 . . . . 5  |-  ( ( ( ( 1st `  F
)  |`  dom  dom  H
)  e.  _V  /\  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )  -> 
( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) )
127, 10, 11sylancr 663 . . . 4  |-  ( ph  ->  ( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) )
135, 12eqtrd 2475 . . 3  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  =  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) ) )
14 simpr 461 . . . . . 6  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  z  =  <. X ,  Y >. )
1514fveq2d 5700 . . . . 5  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( ( 2nd `  F ) `  z
)  =  ( ( 2nd `  F ) `
 <. X ,  Y >. ) )
16 df-ov 6099 . . . . 5  |-  ( X ( 2nd `  F
) Y )  =  ( ( 2nd `  F
) `  <. X ,  Y >. )
1715, 16syl6eqr 2493 . . . 4  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( ( 2nd `  F ) `  z
)  =  ( X ( 2nd `  F
) Y ) )
1814fveq2d 5700 . . . . 5  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( H `  z )  =  ( H `  <. X ,  Y >. ) )
19 df-ov 6099 . . . . 5  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
2018, 19syl6eqr 2493 . . . 4  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( H `  z )  =  ( X H Y ) )
2117, 20reseq12d 5116 . . 3  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( ( ( 2nd `  F ) `
 z )  |`  ( H `  z ) )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )
22 resf2nd.x . . . . 5  |-  ( ph  ->  X  e.  S )
23 resf2nd.y . . . . 5  |-  ( ph  ->  Y  e.  S )
24 opelxpi 4876 . . . . 5  |-  ( ( X  e.  S  /\  Y  e.  S )  -> 
<. X ,  Y >.  e.  ( S  X.  S
) )
2522, 23, 24syl2anc 661 . . . 4  |-  ( ph  -> 
<. X ,  Y >.  e.  ( S  X.  S
) )
26 resf1st.s . . . . 5  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
27 fndm 5515 . . . . 5  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
2826, 27syl 16 . . . 4  |-  ( ph  ->  dom  H  =  ( S  X.  S ) )
2925, 28eleqtrrd 2520 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  H )
30 ovex 6121 . . . . 5  |-  ( X ( 2nd `  F
) Y )  e. 
_V
3130resex 5155 . . . 4  |-  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) )  e.  _V
3231a1i 11 . . 3  |-  ( ph  ->  ( ( X ( 2nd `  F ) Y )  |`  ( X H Y ) )  e.  _V )
3313, 21, 29, 32fvmptd 5784 . 2  |-  ( ph  ->  ( ( 2nd `  ( F  |`f  H ) ) `  <. X ,  Y >. )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )
341, 33syl5eq 2487 1  |-  ( ph  ->  ( X ( 2nd `  ( F  |`f  H ) ) Y )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2977   <.cop 3888    e. cmpt 4355    X. cxp 4843   dom cdm 4845    |` cres 4847    Fn wfn 5418   ` cfv 5423  (class class class)co 6096   1stc1st 6580   2ndc2nd 6581    |`f cresf 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-2nd 6583  df-resf 14776
This theorem is referenced by:  funcres  14811
  Copyright terms: Public domain W3C validator