MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval Structured version   Visualization version   GIF version

Theorem resfval 16375
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
Assertion
Ref Expression
resfval (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem resfval
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resf 16344 . . 3 f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
21a1i 11 . 2 (𝜑 → ↾f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩))
3 simprl 790 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → 𝑓 = 𝐹)
43fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (1st𝑓) = (1st𝐹))
5 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → = 𝐻)
65dmeqd 5248 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom = dom 𝐻)
76dmeqd 5248 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom dom = dom dom 𝐻)
84, 7reseq12d 5318 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((1st𝑓) ↾ dom dom ) = ((1st𝐹) ↾ dom dom 𝐻))
93fveq2d 6107 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (2nd𝑓) = (2nd𝐹))
109fveq1d 6105 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((2nd𝑓)‘𝑥) = ((2nd𝐹)‘𝑥))
115fveq1d 6105 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥) = (𝐻𝑥))
1210, 11reseq12d 5318 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (((2nd𝑓)‘𝑥) ↾ (𝑥)) = (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))
136, 12mpteq12dv 4663 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥))) = (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥))))
148, 13opeq12d 4348 . 2 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
15 resfval.c . . 3 (𝜑𝐹𝑉)
16 elex 3185 . . 3 (𝐹𝑉𝐹 ∈ V)
1715, 16syl 17 . 2 (𝜑𝐹 ∈ V)
18 resfval.d . . 3 (𝜑𝐻𝑊)
19 elex 3185 . . 3 (𝐻𝑊𝐻 ∈ V)
2018, 19syl 17 . 2 (𝜑𝐻 ∈ V)
21 opex 4859 . . 3 ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V
2221a1i 11 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V)
232, 14, 17, 20, 22ovmpt2d 6686 1 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131  cmpt 4643  dom cdm 5038  cres 5040  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  f cresf 16340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-resf 16344
This theorem is referenced by:  resfval2  16376  resf1st  16377  resf2nd  16378  funcres  16379
  Copyright terms: Public domain W3C validator