MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval Structured version   Unicode version

Theorem resfval 15383
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c  |-  ( ph  ->  F  e.  V )
resfval.d  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
resfval  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( x  e.  dom  H  |->  ( ( ( 2nd `  F
) `  x )  |`  ( H `  x
) ) ) >.
)
Distinct variable groups:    x, F    x, H    ph, x
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem resfval
Dummy variables  f  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resf 15352 . . 3  |-  |`f  =  ( f  e. 
_V ,  h  e. 
_V  |->  <. ( ( 1st `  f )  |`  dom  dom  h ) ,  ( x  e.  dom  h  |->  ( ( ( 2nd `  f ) `  x
)  |`  ( h `  x ) ) )
>. )
21a1i 11 . 2  |-  ( ph  -> 
|`f 
=  ( f  e. 
_V ,  h  e. 
_V  |->  <. ( ( 1st `  f )  |`  dom  dom  h ) ,  ( x  e.  dom  h  |->  ( ( ( 2nd `  f ) `  x
)  |`  ( h `  x ) ) )
>. ) )
3 simprl 754 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
f  =  F )
43fveq2d 5852 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( 1st `  f
)  =  ( 1st `  F ) )
5 simprr 755 . . . . . 6  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  ->  h  =  H )
65dmeqd 5194 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  ->  dom  h  =  dom  H
)
76dmeqd 5194 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  ->  dom  dom  h  =  dom  dom 
H )
84, 7reseq12d 5263 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( ( 1st `  f
)  |`  dom  dom  h
)  =  ( ( 1st `  F )  |`  dom  dom  H )
)
93fveq2d 5852 . . . . . 6  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( 2nd `  f
)  =  ( 2nd `  F ) )
109fveq1d 5850 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( ( 2nd `  f
) `  x )  =  ( ( 2nd `  F ) `  x
) )
115fveq1d 5850 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( h `  x
)  =  ( H `
 x ) )
1210, 11reseq12d 5263 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( ( ( 2nd `  f ) `  x
)  |`  ( h `  x ) )  =  ( ( ( 2nd `  F ) `  x
)  |`  ( H `  x ) ) )
136, 12mpteq12dv 4517 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  -> 
( x  e.  dom  h  |->  ( ( ( 2nd `  f ) `
 x )  |`  ( h `  x
) ) )  =  ( x  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  x
)  |`  ( H `  x ) ) ) )
148, 13opeq12d 4211 . 2  |-  ( (
ph  /\  ( f  =  F  /\  h  =  H ) )  ->  <. ( ( 1st `  f
)  |`  dom  dom  h
) ,  ( x  e.  dom  h  |->  ( ( ( 2nd `  f
) `  x )  |`  ( h `  x
) ) ) >.  =  <. ( ( 1st `  F )  |`  dom  dom  H ) ,  ( x  e.  dom  H  |->  ( ( ( 2nd `  F
) `  x )  |`  ( H `  x
) ) ) >.
)
15 resfval.c . . 3  |-  ( ph  ->  F  e.  V )
16 elex 3115 . . 3  |-  ( F  e.  V  ->  F  e.  _V )
1715, 16syl 16 . 2  |-  ( ph  ->  F  e.  _V )
18 resfval.d . . 3  |-  ( ph  ->  H  e.  W )
19 elex 3115 . . 3  |-  ( H  e.  W  ->  H  e.  _V )
2018, 19syl 16 . 2  |-  ( ph  ->  H  e.  _V )
21 opex 4701 . . 3  |-  <. (
( 1st `  F
)  |`  dom  dom  H
) ,  ( x  e.  dom  H  |->  ( ( ( 2nd `  F
) `  x )  |`  ( H `  x
) ) ) >.  e.  _V
2221a1i 11 . 2  |-  ( ph  -> 
<. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( x  e.  dom  H  |->  ( ( ( 2nd `  F
) `  x )  |`  ( H `  x
) ) ) >.  e.  _V )
232, 14, 17, 20, 22ovmpt2d 6403 1  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( x  e.  dom  H  |->  ( ( ( 2nd `  F
) `  x )  |`  ( H `  x
) ) ) >.
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106   <.cop 4022    |-> cmpt 4497   dom cdm 4988    |` cres 4990   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   1stc1st 6771   2ndc2nd 6772    |`f cresf 15348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-res 5000  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-resf 15352
This theorem is referenced by:  resfval2  15384  resf1st  15385  resf2nd  15386  funcres  15387
  Copyright terms: Public domain W3C validator