MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recextlem2 Structured version   Visualization version   GIF version

Theorem recextlem2 10537
Description: Lemma for recex 10538. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0)

Proof of Theorem recextlem2
StepHypRef Expression
1 oveq2 6557 . . . . . . . . 9 (𝐵 = 0 → (i · 𝐵) = (i · 0))
2 ax-icn 9874 . . . . . . . . . 10 i ∈ ℂ
32mul01i 10105 . . . . . . . . 9 (i · 0) = 0
41, 3syl6eq 2660 . . . . . . . 8 (𝐵 = 0 → (i · 𝐵) = 0)
5 oveq12 6558 . . . . . . . 8 ((𝐴 = 0 ∧ (i · 𝐵) = 0) → (𝐴 + (i · 𝐵)) = (0 + 0))
64, 5sylan2 490 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = (0 + 0))
7 00id 10090 . . . . . . 7 (0 + 0) = 0
86, 7syl6eq 2660 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = 0)
98necon3ai 2807 . . . . 5 ((𝐴 + (i · 𝐵)) ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
10 neorian 2876 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
119, 10sylibr 223 . . . 4 ((𝐴 + (i · 𝐵)) ≠ 0 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
12 remulcl 9900 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
1312anidms 675 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
14 remulcl 9900 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ)
1514anidms 675 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ)
1613, 15anim12i 588 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
1716adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
18 msqgt0 10427 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴))
19 msqge0 10428 . . . . . . . 8 (𝐵 ∈ ℝ → 0 ≤ (𝐵 · 𝐵))
2018, 19anim12i 588 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
2120an32s 842 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
22 addgtge0 10395 . . . . . 6 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2317, 21, 22syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2416adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
25 msqge0 10428 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
26 msqgt0 10427 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 0 < (𝐵 · 𝐵))
2725, 26anim12i 588 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
2827anassrs 678 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
29 addgegt0 10394 . . . . . 6 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3024, 28, 29syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3123, 30jaodan 822 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3211, 31sylan2 490 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
33323impa 1251 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3433gt0ne0d 10471 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  recex  10538
  Copyright terms: Public domain W3C validator