Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Structured version   Visualization version   GIF version

Theorem ptval 21183
 Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptval ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-pt 15928 . . 3 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
21a1i 11 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))})))
3 simpr 476 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
43dmeqd 5248 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
5 fndm 5904 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65ad2antlr 759 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
74, 6eqtrd 2644 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
87fneq2d 5896 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑔 Fn dom 𝑓𝑔 Fn 𝐴))
93fveq1d 6105 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
109eleq2d 2673 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
117, 10raleqbidv 3129 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦)))
127difeq1d 3689 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (dom 𝑓𝑧) = (𝐴𝑧))
139unieqd 4382 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
1413eqeq2d 2620 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
1512, 14raleqbidv 3129 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
1615rexbidv 3034 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
178, 11, 163anbi123d 1391 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))))
187ixpeq1d 7806 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦𝐴 (𝑔𝑦))
1918eqeq2d 2620 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦𝐴 (𝑔𝑦)))
2017, 19anbi12d 743 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2120exbidv 1837 . . . . 5 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2221abbidv 2728 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))})
23 ptval.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2422, 23syl6eqr 2662 . . 3 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = 𝐵)
2524fveq2d 6107 . 2 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘𝐵))
26 fnex 6386 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
2726ancoms 468 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐹 ∈ V)
28 fvex 6113 . . 3 (topGen‘𝐵) ∈ V
2928a1i 11 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → (topGen‘𝐵) ∈ V)
302, 25, 27, 29fvmptd 6197 1 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537  ∪ cuni 4372   ↦ cmpt 4643  dom cdm 5038   Fn wfn 5799  ‘cfv 5804  Xcixp 7794  Fincfn 7841  topGenctg 15921  ∏tcpt 15922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ixp 7795  df-pt 15928 This theorem is referenced by:  pttop  21195  ptopn  21196  ptuni  21207  ptval2  21214  ptpjcn  21224  ptpjopn  21225  ptclsg  21228  ptcnp  21235  prdstopn  21241  xkoptsub  21267  ptcmplem1  21666  tmdgsum2  21710  prdsxmslem2  22144  ptrecube  32579
 Copyright terms: Public domain W3C validator