MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Structured version   Unicode version

Theorem ptval 20516
Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptval  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  B ) )
Distinct variable groups:    x, g,
y, z, A    g, F, x, y, z    g, V, x, y, z
Allowed substitution hints:    B( x, y, z, g)

Proof of Theorem ptval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-pt 15302 . . 3  |-  Xt_  =  ( f  e.  _V  |->  ( topGen `  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) } ) )
21a1i 11 . 2  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  Xt_  =  ( f  e.  _V  |->  ( topGen `  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f
( g `  y
)  e.  ( f `
 y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y )  =  U. ( f `
 y ) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) } ) ) )
3 simpr 462 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  f  =  F )
43dmeqd 5057 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  dom  f  =  dom  F )
5 fndm 5693 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  dom  F  =  A )
65ad2antlr 731 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  dom  F  =  A )
74, 6eqtrd 2470 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  dom  f  =  A )
87fneq2d 5685 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
g  Fn  dom  f  <->  g  Fn  A ) )
93fveq1d 5883 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
f `  y )  =  ( F `  y ) )
109eleq2d 2499 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( g `  y
)  e.  ( f `
 y )  <->  ( g `  y )  e.  ( F `  y ) ) )
117, 10raleqbidv 3046 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  <->  A. y  e.  A  ( g `  y
)  e.  ( F `
 y ) ) )
127difeq1d 3588 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( dom  f  \  z
)  =  ( A 
\  z ) )
139unieqd 4232 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  U. (
f `  y )  =  U. ( F `  y ) )
1413eqeq2d 2443 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( g `  y
)  =  U. (
f `  y )  <->  ( g `  y )  =  U. ( F `
 y ) ) )
1512, 14raleqbidv 3046 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
)  <->  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
) )
1615rexbidv 2946 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y
)  =  U. (
f `  y )  <->  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )
178, 11, 163anbi123d 1335 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( g  Fn  dom  f  /\  A. y  e. 
dom  f ( g `
 y )  e.  ( f `  y
)  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  <->  ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
) ) )
187ixpeq1d 7542 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  X_ y  e.  dom  f ( g `
 y )  = 
X_ y  e.  A  ( g `  y
) )
1918eqeq2d 2443 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
x  =  X_ y  e.  dom  f ( g `
 y )  <->  x  =  X_ y  e.  A  ( g `  y ) ) )
2017, 19anbi12d 715 . . . . . 6  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) )  <-> 
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  x  =  X_ y  e.  A  ( g `  y ) ) ) )
2120exbidv 1761 . . . . 5  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f
( g `  y
)  e.  ( f `
 y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y )  =  U. ( f `
 y ) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) )  <->  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) ) )
2221abbidv 2565 . . . 4  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) }  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } )
23 ptval.1 . . . 4  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
2422, 23syl6eqr 2488 . . 3  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) }  =  B )
2524fveq2d 5885 . 2  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( topGen `
 { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) } )  =  ( topGen `  B ) )
26 fnex 6147 . . 3  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
2726ancoms 454 . 2  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  F  e.  _V )
28 fvex 5891 . . 3  |-  ( topGen `  B )  e.  _V
2928a1i 11 . 2  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( topGen `  B )  e.  _V )
302, 25, 27, 29fvmptd 5970 1  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1870   {cab 2414   A.wral 2782   E.wrex 2783   _Vcvv 3087    \ cdif 3439   U.cuni 4222    |-> cmpt 4484   dom cdm 4854    Fn wfn 5596   ` cfv 5601   X_cixp 7530   Fincfn 7577   topGenctg 15295   Xt_cpt 15296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ixp 7531  df-pt 15302
This theorem is referenced by:  pttop  20528  ptopn  20529  ptuni  20540  ptval2  20547  ptpjcn  20557  ptpjopn  20558  ptclsg  20561  ptcnp  20568  prdstopn  20574  xkoptsub  20600  ptcmplem1  20998  tmdgsum2  21042  prdsxmslem2  21475  ptrecube  31644
  Copyright terms: Public domain W3C validator