Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptunimpt | Structured version Visualization version GIF version |
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
Ref | Expression |
---|---|
ptunimpt | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
2 | 1 | fvmpt2 6200 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) = 𝐾) |
3 | 2 | eqcomd 2616 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → 𝐾 = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
4 | 3 | unieqd 4382 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
5 | 4 | ralimiaa 2935 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
7 | ixpeq2 7808 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
9 | nffvmpt1 6111 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) | |
10 | 9 | nfuni 4378 | . . . 4 ⊢ Ⅎ𝑥∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) |
11 | nfcv 2751 | . . . 4 ⊢ Ⅎ𝑦∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) | |
12 | fveq2 6103 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
13 | 12 | unieqd 4382 | . . . 4 ⊢ (𝑦 = 𝑥 → ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
14 | 10, 11, 13 | cbvixp 7811 | . . 3 ⊢ X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) |
15 | 8, 14 | syl6eqr 2662 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦)) |
16 | 1 | fmpt 6289 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
17 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
18 | 17 | ptuni 21207 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
19 | 16, 18 | sylan2b 491 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
20 | 15, 19 | eqtrd 2644 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∪ cuni 4372 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 Xcixp 7794 ∏tcpt 15922 Topctop 20517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-ixp 7795 df-en 7842 df-fin 7845 df-fi 8200 df-topgen 15927 df-pt 15928 df-top 20521 df-bases 20522 |
This theorem is referenced by: pttopon 21209 kelac1 36651 |
Copyright terms: Public domain | W3C validator |