MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetres2 Structured version   Visualization version   GIF version

Theorem psmetres2 21929
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmetres2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))

Proof of Theorem psmetres2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psmetf 21921 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21adantr 480 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3 simpr 476 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
4 xpss12 5148 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
53, 3, 4syl2anc 691 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
62, 5fssresd 5984 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
7 simpr 476 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑎𝑅)
87, 7ovresd 6699 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑎𝐷𝑎))
9 simpll 786 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝐷 ∈ (PsMet‘𝑋))
103sselda 3568 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑎𝑋)
11 psmet0 21923 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → (𝑎𝐷𝑎) = 0)
129, 10, 11syl2anc 691 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎𝐷𝑎) = 0)
138, 12eqtrd 2644 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0)
149ad2antrr 758 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝐷 ∈ (PsMet‘𝑋))
153ad2antrr 758 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑅𝑋)
1615sselda 3568 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑐𝑋)
1710ad2antrr 758 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑎𝑋)
183adantr 480 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑅𝑋)
1918sselda 3568 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑏𝑋)
2019adantr 480 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑏𝑋)
21 psmettri2 21924 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
2214, 16, 17, 20, 21syl13anc 1320 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
237adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑎𝑅)
24 simpr 476 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑏𝑅)
2523, 24ovresd 6699 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏))
2625adantr 480 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏))
27 simpr 476 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑐𝑅)
287ad2antrr 758 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑎𝑅)
2927, 28ovresd 6699 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑐𝐷𝑎))
3024adantr 480 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑏𝑅)
3127, 30ovresd 6699 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑐𝐷𝑏))
3229, 31oveq12d 6567 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
3322, 26, 323brtr4d 4615 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3433ralrimiva 2949 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → ∀𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3534ralrimiva 2949 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3613, 35jca 553 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))
3736ralrimiva 2949 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))
38 elfvex 6131 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
3938adantr 480 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ V)
4039, 3ssexd 4733 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
41 ispsmet 21919 . . 3 (𝑅 ∈ V → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧ ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))))
4240, 41syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧ ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))))
436, 37, 42mpbir2and 959 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   class class class wbr 4583   × cxp 5036  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  *cxr 9952  cle 9954   +𝑒 cxad 11820  PsMetcpsmet 19551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-xr 9957  df-psmet 19559
This theorem is referenced by:  restmetu  22185
  Copyright terms: Public domain W3C validator