MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetres2 Structured version   Unicode version

Theorem psmetres2 20008
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmetres2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R )
)

Proof of Theorem psmetres2
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psmetf 20000 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
21adantr 465 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  D : ( X  X.  X ) --> RR* )
3 simpr 461 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  R  C_  X )
4 xpss12 5045 . . . . 5  |-  ( ( R  C_  X  /\  R  C_  X )  -> 
( R  X.  R
)  C_  ( X  X.  X ) )
53, 3, 4syl2anc 661 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( R  X.  R )  C_  ( X  X.  X
) )
6 fssres 5678 . . . 4  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  ( R  X.  R )  C_  ( X  X.  X ) )  ->  ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR* )
72, 5, 6syl2anc 661 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) ) : ( R  X.  R
) --> RR* )
8 simpr 461 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  a  e.  R )
98, 8ovresd 6333 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) a )  =  ( a D a ) )
10 simpll 753 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  D  e.  (PsMet `  X )
)
113sselda 3456 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  a  e.  X )
12 psmet0 20002 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
a D a )  =  0 )
1310, 11, 12syl2anc 661 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
a D a )  =  0 )
149, 13eqtrd 2492 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) a )  =  0 )
1510adantr 465 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  D  e.  (PsMet `  X )
)
1615adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  D  e.  (PsMet `  X )
)
173ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  R  C_  X )
1817sselda 3456 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  c  e.  X )
1911adantr 465 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  a  e.  X )
2019adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  a  e.  X )
213adantr 465 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  R  C_  X )
2221sselda 3456 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  b  e.  X )
2322adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  b  e.  X )
24 psmettri2 20003 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  (
c  e.  X  /\  a  e.  X  /\  b  e.  X )
)  ->  ( a D b )  <_ 
( ( c D a ) +e
( c D b ) ) )
2516, 18, 20, 23, 24syl13anc 1221 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) )
268adantr 465 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  a  e.  R )
27 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  b  e.  R )
2826, 27ovresd 6333 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) b )  =  ( a D b ) )
2928adantr 465 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) b )  =  ( a D b ) )
30 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  c  e.  R )
3126adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  a  e.  R )
3230, 31ovresd 6333 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
c ( D  |`  ( R  X.  R
) ) a )  =  ( c D a ) )
3327adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  b  e.  R )
3430, 33ovresd 6333 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
c ( D  |`  ( R  X.  R
) ) b )  =  ( c D b ) )
3532, 34oveq12d 6210 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
( c ( D  |`  ( R  X.  R
) ) a ) +e ( c ( D  |`  ( R  X.  R ) ) b ) )  =  ( ( c D a ) +e
( c D b ) ) )
3625, 29, 353brtr4d 4422 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) )
3736ralrimiva 2822 . . . . . 6  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  A. c  e.  R  ( a
( D  |`  ( R  X.  R ) ) b )  <_  (
( c ( D  |`  ( R  X.  R
) ) a ) +e ( c ( D  |`  ( R  X.  R ) ) b ) ) )
3837ralrimiva 2822 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  A. b  e.  R  A. c  e.  R  ( a
( D  |`  ( R  X.  R ) ) b )  <_  (
( c ( D  |`  ( R  X.  R
) ) a ) +e ( c ( D  |`  ( R  X.  R ) ) b ) ) )
3914, 38jca 532 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
( a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) )
4039ralrimiva 2822 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  A. a  e.  R  ( (
a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) )
417, 40jca 532 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  (
( D  |`  ( R  X.  R ) ) : ( R  X.  R ) --> RR*  /\  A. a  e.  R  (
( a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) ) )
42 elfvex 5818 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
4342adantr 465 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  X  e.  _V )
44 ssexg 4538 . . . 4  |-  ( ( R  C_  X  /\  X  e.  _V )  ->  R  e.  _V )
453, 43, 44syl2anc 661 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  R  e.  _V )
46 ispsmet 19998 . . 3  |-  ( R  e.  _V  ->  (
( D  |`  ( R  X.  R ) )  e.  (PsMet `  R
)  <->  ( ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR*  /\  A. a  e.  R  ( (
a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) ) ) )
4745, 46syl 16 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  (
( D  |`  ( R  X.  R ) )  e.  (PsMet `  R
)  <->  ( ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR*  /\  A. a  e.  R  ( (
a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) ) ) )
4841, 47mpbird 232 1  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3070    C_ wss 3428   class class class wbr 4392    X. cxp 4938    |` cres 4942   -->wf 5514   ` cfv 5518  (class class class)co 6192   0cc0 9385   RR*cxr 9520    <_ cle 9522   +ecxad 11190  PsMetcpsmet 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-map 7318  df-xr 9525  df-psmet 17920
This theorem is referenced by:  restmetu  20280
  Copyright terms: Public domain W3C validator