MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmdi Structured version   Visualization version   GIF version

Theorem nvmdi 26887
Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmdi.1 𝑋 = (BaseSet‘𝑈)
nvmdi.3 𝑀 = ( −𝑣𝑈)
nvmdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvmdi ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)))

Proof of Theorem nvmdi
StepHypRef Expression
1 simpr1 1060 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝐴 ∈ ℂ)
2 simpr2 1061 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 neg1cn 11001 . . . . . . 7 -1 ∈ ℂ
4 nvmdi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 nvmdi.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
64, 5nvscl 26865 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
73, 6mp3an2 1404 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
873ad2antr3 1221 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (-1𝑆𝐶) ∈ 𝑋)
91, 2, 83jca 1235 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋))
10 eqid 2610 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
114, 10, 5nvdi 26869 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))))
129, 11syldan 486 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))))
134, 5nvscom 26868 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
143, 13mp3anr2 1414 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
15143adantr2 1214 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
1615oveq2d 6565 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
1712, 16eqtrd 2644 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
18 nvmdi.3 . . . . 5 𝑀 = ( −𝑣𝑈)
194, 10, 5, 18nvmval 26881 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑀𝐶) = (𝐵( +𝑣𝑈)(-1𝑆𝐶)))
20193adant3r1 1266 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐵𝑀𝐶) = (𝐵( +𝑣𝑈)(-1𝑆𝐶)))
2120oveq2d 6565 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))))
22 simpl 472 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝑈 ∈ NrmCVec)
234, 5nvscl 26865 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
24233adant3r3 1268 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆𝐵) ∈ 𝑋)
254, 5nvscl 26865 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝐴𝑆𝐶) ∈ 𝑋)
26253adant3r2 1267 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆𝐶) ∈ 𝑋)
274, 10, 5, 18nvmval 26881 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑆𝐵) ∈ 𝑋 ∧ (𝐴𝑆𝐶) ∈ 𝑋) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
2822, 24, 26, 27syl3anc 1318 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
2917, 21, 283eqtr4d 2654 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816  -cneg 10146  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  𝑣 cnsb 26828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839
This theorem is referenced by:  smcnlem  26936  minvecolem2  27115
  Copyright terms: Public domain W3C validator