Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nofulllem4 Structured version   Visualization version   GIF version

Theorem nofulllem4 31104
Description: Lemma for nofull (future) . Show a particular abstraction is an ordinal. (Contributed by Scott Fenton, 25-Apr-2017.)
Hypothesis
Ref Expression
nofulllem4.1 𝑀 = {𝑎 ∈ On ∣ ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎)}
Assertion
Ref Expression
nofulllem4 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊) ∧ ∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦) → 𝑀 ∈ On)
Distinct variable groups:   𝑥,𝐿,𝑦,𝑎   𝑥,𝑅,𝑦,𝑎   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem nofulllem4
StepHypRef Expression
1 nofulllem4.1 . 2 𝑀 = {𝑎 ∈ On ∣ ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎)}
2 unexg 6857 . . . . . . 7 ((𝐿𝑉𝑅𝑊) → (𝐿𝑅) ∈ V)
3 nobndlem1 31091 . . . . . . . 8 ((𝐿𝑅) ∈ V → suc ( bday “ (𝐿𝑅)) ∈ On)
4 sucelon 6909 . . . . . . . 8 ( ( bday “ (𝐿𝑅)) ∈ On ↔ suc ( bday “ (𝐿𝑅)) ∈ On)
53, 4sylibr 223 . . . . . . 7 ((𝐿𝑅) ∈ V → ( bday “ (𝐿𝑅)) ∈ On)
62, 5syl 17 . . . . . 6 ((𝐿𝑉𝑅𝑊) → ( bday “ (𝐿𝑅)) ∈ On)
76ad2ant2l 778 . . . . 5 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) → ( bday “ (𝐿𝑅)) ∈ On)
873adant3 1074 . . . 4 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊) ∧ ∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦) → ( bday “ (𝐿𝑅)) ∈ On)
9 simprl 790 . . . . . . . . . . 11 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) → 𝑅 No )
10 simpr 476 . . . . . . . . . . 11 ((𝑥𝐿𝑦𝑅) → 𝑦𝑅)
11 ssel2 3563 . . . . . . . . . . 11 ((𝑅 No 𝑦𝑅) → 𝑦 No )
129, 10, 11syl2an 493 . . . . . . . . . 10 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ (𝑥𝐿𝑦𝑅)) → 𝑦 No )
13 sltirr 31069 . . . . . . . . . 10 (𝑦 No → ¬ 𝑦 <s 𝑦)
14 breq1 4586 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 <s 𝑦𝑦 <s 𝑦))
1514notbid 307 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (¬ 𝑥 <s 𝑦 ↔ ¬ 𝑦 <s 𝑦))
1615biimprcd 239 . . . . . . . . . . 11 𝑦 <s 𝑦 → (𝑥 = 𝑦 → ¬ 𝑥 <s 𝑦))
1716necon2ad 2797 . . . . . . . . . 10 𝑦 <s 𝑦 → (𝑥 <s 𝑦𝑥𝑦))
1812, 13, 173syl 18 . . . . . . . . 9 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ (𝑥𝐿𝑦𝑅)) → (𝑥 <s 𝑦𝑥𝑦))
1918impr 647 . . . . . . . 8 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ ((𝑥𝐿𝑦𝑅) ∧ 𝑥 <s 𝑦)) → 𝑥𝑦)
20 simpll 786 . . . . . . . . 9 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) → 𝐿 No )
21 simpll 786 . . . . . . . . 9 (((𝑥𝐿𝑦𝑅) ∧ 𝑥 <s 𝑦) → 𝑥𝐿)
22 ssun1 3738 . . . . . . . . . 10 𝐿 ⊆ (𝐿𝑅)
23 nofulllem3 31103 . . . . . . . . . 10 ((𝐿 No 𝑥𝐿𝐿 ⊆ (𝐿𝑅)) → (𝑥 ( bday “ (𝐿𝑅))) = 𝑥)
2422, 23mp3an3 1405 . . . . . . . . 9 ((𝐿 No 𝑥𝐿) → (𝑥 ( bday “ (𝐿𝑅))) = 𝑥)
2520, 21, 24syl2an 493 . . . . . . . 8 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ ((𝑥𝐿𝑦𝑅) ∧ 𝑥 <s 𝑦)) → (𝑥 ( bday “ (𝐿𝑅))) = 𝑥)
26 simplr 788 . . . . . . . . 9 (((𝑥𝐿𝑦𝑅) ∧ 𝑥 <s 𝑦) → 𝑦𝑅)
27 ssun2 3739 . . . . . . . . . 10 𝑅 ⊆ (𝐿𝑅)
28 nofulllem3 31103 . . . . . . . . . 10 ((𝑅 No 𝑦𝑅𝑅 ⊆ (𝐿𝑅)) → (𝑦 ( bday “ (𝐿𝑅))) = 𝑦)
2927, 28mp3an3 1405 . . . . . . . . 9 ((𝑅 No 𝑦𝑅) → (𝑦 ( bday “ (𝐿𝑅))) = 𝑦)
309, 26, 29syl2an 493 . . . . . . . 8 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ ((𝑥𝐿𝑦𝑅) ∧ 𝑥 <s 𝑦)) → (𝑦 ( bday “ (𝐿𝑅))) = 𝑦)
3119, 25, 303netr4d 2859 . . . . . . 7 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ ((𝑥𝐿𝑦𝑅) ∧ 𝑥 <s 𝑦)) → (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅))))
3231expr 641 . . . . . 6 ((((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) ∧ (𝑥𝐿𝑦𝑅)) → (𝑥 <s 𝑦 → (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅)))))
3332ralimdvva 2947 . . . . 5 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊)) → (∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦 → ∀𝑥𝐿𝑦𝑅 (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅)))))
34333impia 1253 . . . 4 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊) ∧ ∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦) → ∀𝑥𝐿𝑦𝑅 (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅))))
35 reseq2 5312 . . . . . . 7 (𝑎 = ( bday “ (𝐿𝑅)) → (𝑥𝑎) = (𝑥 ( bday “ (𝐿𝑅))))
36 reseq2 5312 . . . . . . 7 (𝑎 = ( bday “ (𝐿𝑅)) → (𝑦𝑎) = (𝑦 ( bday “ (𝐿𝑅))))
3735, 36neeq12d 2843 . . . . . 6 (𝑎 = ( bday “ (𝐿𝑅)) → ((𝑥𝑎) ≠ (𝑦𝑎) ↔ (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅)))))
38372ralbidv 2972 . . . . 5 (𝑎 = ( bday “ (𝐿𝑅)) → (∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎) ↔ ∀𝑥𝐿𝑦𝑅 (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅)))))
3938rspcev 3282 . . . 4 (( ( bday “ (𝐿𝑅)) ∈ On ∧ ∀𝑥𝐿𝑦𝑅 (𝑥 ( bday “ (𝐿𝑅))) ≠ (𝑦 ( bday “ (𝐿𝑅)))) → ∃𝑎 ∈ On ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎))
408, 34, 39syl2anc 691 . . 3 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊) ∧ ∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦) → ∃𝑎 ∈ On ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎))
41 onintrab2 6894 . . 3 (∃𝑎 ∈ On ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎) ↔ {𝑎 ∈ On ∣ ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎)} ∈ On)
4240, 41sylib 207 . 2 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊) ∧ ∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦) → {𝑎 ∈ On ∣ ∀𝑥𝐿𝑦𝑅 (𝑥𝑎) ≠ (𝑦𝑎)} ∈ On)
431, 42syl5eqel 2692 1 (((𝐿 No 𝐿𝑉) ∧ (𝑅 No 𝑅𝑊) ∧ ∀𝑥𝐿𝑦𝑅 𝑥 <s 𝑦) → 𝑀 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  wss 3540   cuni 4372   cint 4410   class class class wbr 4583  cres 5040  cima 5041  Oncon0 5640  suc csuc 5642   No csur 31037   <s cslt 31038   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-slt 31041  df-bday 31042
This theorem is referenced by:  nofulllem5  31105
  Copyright terms: Public domain W3C validator