Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfima Structured version   Visualization version   GIF version

Theorem nfima 5393
 Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 5051 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 5319 . . 3 𝑥(𝐴𝐵)
54nfrn 5289 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2749 1 𝑥(𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnfc 2738  ran crn 5039   ↾ cres 5040   “ cima 5041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051 This theorem is referenced by:  nfimad  5394  csbima12  5402  nfpred  5602  nfsup  8240  nfoi  8302  nfseq  12673  gsum2d2  18196  ptbasfi  21194  mbfposr  23225  itg1climres  23287  limciun  23464  funimass4f  28818  poimirlem16  32595  poimirlem19  32598  aomclem8  36649  areaquad  36821  binomcxplemdvbinom  37574  binomcxplemdvsum  37576  binomcxplemnotnn0  37577  rfcnpre1  38201  rfcnpre2  38213
 Copyright terms: Public domain W3C validator