Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre2 Structured version   Visualization version   GIF version

Theorem rfcnpre2 38213
 Description: If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre2.1 𝑥𝐵
rfcnpre2.2 𝑥𝐹
rfcnpre2.3 𝑥𝜑
rfcnpre2.4 𝐾 = (topGen‘ran (,))
rfcnpre2.5 𝑋 = 𝐽
rfcnpre2.6 𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
rfcnpre2.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre2.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre2 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre2
StepHypRef Expression
1 rfcnpre2.3 . . . 4 𝑥𝜑
2 rfcnpre2.2 . . . . . 6 𝑥𝐹
32nfcnv 5223 . . . . 5 𝑥𝐹
4 nfcv 2751 . . . . . 6 𝑥-∞
5 nfcv 2751 . . . . . 6 𝑥(,)
6 rfcnpre2.1 . . . . . 6 𝑥𝐵
74, 5, 6nfov 6575 . . . . 5 𝑥(-∞(,)𝐵)
83, 7nfima 5393 . . . 4 𝑥(𝐹 “ (-∞(,)𝐵))
9 nfrab1 3099 . . . 4 𝑥{𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
10 rfcnpre2.4 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
11 rfcnpre2.5 . . . . . . . . 9 𝑋 = 𝐽
12 eqid 2610 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
13 rfcnpre2.8 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
1410, 11, 12, 13fcnre 38207 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
1514fnvinran 38196 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
16 rfcnpre2.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
17 elioomnf 12139 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝐵)))
1816, 17syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝐵)))
1918baibd 946 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2015, 19syldan 486 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2120pm5.32da 671 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵)))
22 ffn 5958 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
23 elpreima 6245 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵))))
2414, 22, 233syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵))))
25 rabid 3095 . . . . . 6 (𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵} ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵))
2625a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵} ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵)))
2721, 24, 263bitr4d 299 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}))
281, 8, 9, 27eqrd 3586 . . 3 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵})
29 rfcnpre2.6 . . 3 𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
3028, 29syl6eqr 2662 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = 𝐴)
31 iooretop 22379 . . . . 5 (-∞(,)𝐵) ∈ (topGen‘ran (,))
3231a1i 11 . . . 4 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
3332, 10syl6eleqr 2699 . . 3 (𝜑 → (-∞(,)𝐵) ∈ 𝐾)
34 cnima 20879 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,)𝐵) ∈ 𝐾) → (𝐹 “ (-∞(,)𝐵)) ∈ 𝐽)
3513, 33, 34syl2anc 691 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) ∈ 𝐽)
3630, 35eqeltrrd 2689 1 (𝜑𝐴𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738  {crab 2900  ∪ cuni 4372   class class class wbr 4583  ◡ccnv 5037  ran crn 5039   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953  (,)cioo 12046  topGenctg 15921   Cn ccn 20838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841 This theorem is referenced by:  stoweidlem52  38945  cnfsmf  39627
 Copyright terms: Public domain W3C validator