Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrissmrcd | Structured version Visualization version GIF version |
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 16110, and so are equal by mrieqv2d 16122.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrcd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrcd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrcd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrcd.4 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mrissmrcd.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
mrissmrcd.6 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mrissmrcd | ⊢ (𝜑 → 𝑆 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrcd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrissmrcd.2 | . . . . . 6 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mrissmrcd.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
4 | mrissmrcd.5 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | 1, 2, 3, 4 | mressmrcd 16110 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
6 | pssne 3665 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑇) ≠ (𝑁‘𝑆)) | |
7 | 6 | necomd 2837 | . . . . . 6 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑆) ≠ (𝑁‘𝑇)) |
8 | 7 | necon2bi 2812 | . . . . 5 ⊢ ((𝑁‘𝑆) = (𝑁‘𝑇) → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
10 | mrissmrcd.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
11 | mrissmrcd.3 | . . . . . . 7 ⊢ 𝐼 = (mrInd‘𝐴) | |
12 | 11, 1, 10 | mrissd 16119 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
13 | 1, 2, 11, 12 | mrieqv2d 16122 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)))) |
14 | 10, 13 | mpbid 221 | . . . . 5 ⊢ (𝜑 → ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆))) |
15 | 10, 4 | ssexd 4733 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
16 | simpr 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → 𝑠 = 𝑇) | |
17 | 16 | psseq1d 3661 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆)) |
18 | 16 | fveq2d 6107 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑁‘𝑠) = (𝑁‘𝑇)) |
19 | 18 | psseq1d 3661 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑁‘𝑠) ⊊ (𝑁‘𝑆) ↔ (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
20 | 17, 19 | imbi12d 333 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) ↔ (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
21 | 15, 20 | spcdv 3264 | . . . . 5 ⊢ (𝜑 → (∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
22 | 14, 21 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
23 | 9, 22 | mtod 188 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ⊊ 𝑆) |
24 | sspss 3668 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) | |
25 | 4, 24 | sylib 207 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) |
26 | 25 | ord 391 | . . 3 ⊢ (𝜑 → (¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆)) |
27 | 23, 26 | mpd 15 | . 2 ⊢ (𝜑 → 𝑇 = 𝑆) |
28 | 27 | eqcomd 2616 | 1 ⊢ (𝜑 → 𝑆 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 ∀wal 1473 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 ⊊ wpss 3541 ‘cfv 5804 Moorecmre 16065 mrClscmrc 16066 mrIndcmri 16067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-mre 16069 df-mrc 16070 df-mri 16071 |
This theorem is referenced by: mreexexlem3d 16129 acsmap2d 17002 |
Copyright terms: Public domain | W3C validator |