Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgmplusf | Structured version Visualization version GIF version |
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
mgmplusf.1 | ⊢ 𝐵 = (Base‘𝑀) |
mgmplusf.2 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
mgmplusf | ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmplusf.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2610 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 17068 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
4 | 3 | 3expb 1258 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
5 | 4 | ralrimivva 2954 | . 2 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
6 | mgmplusf.2 | . . . 4 ⊢ ⨣ = (+𝑓‘𝑀) | |
7 | 1, 2, 6 | plusffval 17070 | . . 3 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) |
8 | 7 | fmpt2 7126 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵 ↔ ⨣ :(𝐵 × 𝐵)⟶𝐵) |
9 | 5, 8 | sylib 207 | 1 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 × cxp 5036 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 +𝑓cplusf 17062 Mgmcmgm 17063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-plusf 17064 df-mgm 17065 |
This theorem is referenced by: mgmb1mgm1 17077 mndplusf 17132 mgmplusfreseq 41563 |
Copyright terms: Public domain | W3C validator |