Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issstrmgm Structured version   Visualization version   GIF version

Theorem issstrmgm 17075
 Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
issstrmgm.b 𝐵 = (Base‘𝐺)
issstrmgm.p + = (+g𝐺)
issstrmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issstrmgm ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem issstrmgm
StepHypRef Expression
1 simplr 788 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
2 simplr 788 . . . . . . . . . 10 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆𝐵)
3 issstrmgm.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
4 issstrmgm.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
53, 4ressbas2 15758 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
62, 5syl 17 . . . . . . . . 9 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 = (Base‘𝐻))
76eleq2d 2673 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
87biimpcd 238 . . . . . . 7 (𝑥𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
98adantr 480 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
109impcom 445 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
116eleq2d 2673 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑦𝑆𝑦 ∈ (Base‘𝐻)))
1211biimpcd 238 . . . . . . 7 (𝑦𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1312adantl 481 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1413impcom 445 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
15 eqid 2610 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2610 . . . . . 6 (+g𝐻) = (+g𝐻)
1715, 16mgmcl 17068 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
181, 10, 14, 17syl3anc 1318 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
19 fvex 6113 . . . . . . . . . 10 (Base‘𝐺) ∈ V
204, 19eqeltri 2684 . . . . . . . . 9 𝐵 ∈ V
2120ssex 4730 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
2221adantl 481 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → 𝑆 ∈ V)
23 issstrmgm.p . . . . . . . 8 + = (+g𝐺)
243, 23ressplusg 15818 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2522, 24syl 17 . . . . . 6 ((𝐻𝑉𝑆𝐵) → + = (+g𝐻))
2625adantr 480 . . . . 5 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → + = (+g𝐻))
2726oveqdr 6573 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
286adantr 480 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2918, 27, 283eltr4d 2703 . . 3 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3029ralrimivva 2954 . 2 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
315adantl 481 . . . . 5 ((𝐻𝑉𝑆𝐵) → 𝑆 = (Base‘𝐻))
3225oveqd 6566 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3332, 31eleq12d 2682 . . . . . 6 ((𝐻𝑉𝑆𝐵) → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3431, 33raleqbidv 3129 . . . . 5 ((𝐻𝑉𝑆𝐵) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3531, 34raleqbidv 3129 . . . 4 ((𝐻𝑉𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3635biimpa 500 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3715, 16ismgm 17066 . . . 4 (𝐻𝑉 → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3837ad2antrr 758 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3936, 38mpbird 246 . 2 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
4030, 39impbida 873 1 ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  Basecbs 15695   ↾s cress 15696  +gcplusg 15768  Mgmcmgm 17063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mgm 17065 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator