Step | Hyp | Ref
| Expression |
1 | | elpwi 4117 |
. . . . 5
⊢ (𝑑 ∈ 𝒫 𝐴 → 𝑑 ⊆ 𝐴) |
2 | | marypha1.d |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ⊆ 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
3 | 1, 2 | sylan2 490 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
4 | 3 | ralrimiva 2949 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑)) |
5 | | marypha1.c |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ (𝐴 × 𝐵)) |
6 | | marypha1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ Fin) |
7 | | marypha1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ Fin) |
8 | | xpexg 6858 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ V) |
9 | 6, 7, 8 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
10 | | elpw2g 4754 |
. . . . . 6
⊢ ((𝐴 × 𝐵) ∈ V → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵))) |
11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵))) |
12 | 5, 11 | mpbird 246 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝒫 (𝐴 × 𝐵)) |
13 | | xpeq2 5053 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵)) |
14 | 13 | pweqd 4113 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
15 | 14 | raleqdv 3121 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
16 | 15 | imbi2d 329 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)))) |
17 | | marypha1lem 8222 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
18 | 17 | com12 32 |
. . . . . 6
⊢ (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
19 | 16, 18 | vtoclga 3245 |
. . . . 5
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
20 | 7, 6, 19 | sylc 63 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) |
21 | | imaeq1 5380 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (𝑐 “ 𝑑) = (𝐶 “ 𝑑)) |
22 | 21 | breq2d 4595 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑑 ≼ (𝑐 “ 𝑑) ↔ 𝑑 ≼ (𝐶 “ 𝑑))) |
23 | 22 | ralbidv 2969 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑))) |
24 | | pweq 4111 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶) |
25 | 24 | rexeqdv 3122 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
26 | 23, 25 | imbi12d 333 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V))) |
27 | 26 | rspcva 3280 |
. . . 4
⊢ ((𝐶 ∈ 𝒫 (𝐴 × 𝐵) ∧ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
28 | 12, 20, 27 | syl2anc 691 |
. . 3
⊢ (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
29 | 4, 28 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V) |
30 | | elpwi 4117 |
. . . . . . 7
⊢ (𝑓 ∈ 𝒫 𝐶 → 𝑓 ⊆ 𝐶) |
31 | 30, 5 | sylan9ssr 3582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵)) |
32 | | rnss 5275 |
. . . . . 6
⊢ (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
33 | 31, 32 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
34 | | rnxpss 5485 |
. . . . 5
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
35 | 33, 34 | syl6ss 3580 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ 𝐵) |
36 | | f1ssr 6020 |
. . . . 5
⊢ ((𝑓:𝐴–1-1→V ∧ ran 𝑓 ⊆ 𝐵) → 𝑓:𝐴–1-1→𝐵) |
37 | 36 | expcom 450 |
. . . 4
⊢ (ran
𝑓 ⊆ 𝐵 → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
38 | 35, 37 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
39 | 38 | reximdva 3000 |
. 2
⊢ (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵)) |
40 | 29, 39 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵) |