Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolcmp Structured version   Visualization version   GIF version

Theorem lvolcmp 33921
 Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lvolcmp.l = (le‘𝐾)
lvolcmp.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolcmp ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lvolcmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1055 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
2 simp1 1054 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ HL)
3 eqid 2610 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lvolcmp.v . . . . . . 7 𝑉 = (LVols‘𝐾)
53, 4lvolbase 33882 . . . . . 6 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
653ad2ant2 1076 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2610 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2610 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
93, 7, 8, 4islvol4 33878 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 691 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑉 ↔ ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 221 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1062 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 33670 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1075 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1059 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑉)
183, 4lvolbase 33882 . . . . . . . 8 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1060 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LPlanes‘𝐾))
213, 8lplnbase 33838 . . . . . . . 8 (𝑧 ∈ (LPlanes‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1061 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1057 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lvolcmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 33583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1321 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 16776 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1320 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 711 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4lplncvrlvol2 33919 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑌𝑉) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1321 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 33588 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1336 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 221 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑧 ∈ (LPlanes‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1277 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑧 ∈ (LPlanes‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3012 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (∃𝑧 ∈ (LPlanes‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 16774 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 691 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → 𝑋 𝑋)
41 breq2 4587 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 234 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 201 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌𝑋 = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763   ⋖ ccvr 33567  HLchlt 33655  LPlanesclpl 33796  LVolsclvol 33797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804 This theorem is referenced by:  lvolnltN  33922  2lplnja  33923
 Copyright terms: Public domain W3C validator