Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolcmp Structured version   Unicode version

Theorem lvolcmp 32949
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lvolcmp.l  |-  .<_  =  ( le `  K )
lvolcmp.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lvolcmp  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .<_  Y  <->  X  =  Y ) )

Proof of Theorem lvolcmp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp2 984 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
2 simp1 983 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  K  e.  HL )
3 eqid 2441 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
4 lvolcmp.v . . . . . . 7  |-  V  =  ( LVols `  K )
53, 4lvolbase 32910 . . . . . 6  |-  ( X  e.  V  ->  X  e.  ( Base `  K
) )
653ad2ant2 1005 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  ( Base `  K ) )
7 eqid 2441 . . . . . 6  |-  (  <o  `  K )  =  ( 
<o  `  K )
8 eqid 2441 . . . . . 6  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
93, 7, 8, 4islvol4 32906 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K ) )  -> 
( X  e.  V  <->  E. z  e.  ( LPlanes `  K ) z ( 
<o  `  K ) X ) )
102, 6, 9syl2anc 656 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  e.  V  <->  E. z  e.  ( LPlanes `  K ) z ( 
<o  `  K ) X ) )
111, 10mpbid 210 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  E. z  e.  (
LPlanes `  K ) z (  <o  `  K ) X )
12 simpr3 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  X  .<_  Y )
13 hlpos 32698 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Poset )
14133ad2ant1 1004 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  K  e.  Poset )
1514adantr 462 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  K  e.  Poset )
166adantr 462 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  X  e.  ( Base `  K ) )
17 simpl3 988 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  Y  e.  V )
183, 4lvolbase 32910 . . . . . . . 8  |-  ( Y  e.  V  ->  Y  e.  ( Base `  K
) )
1917, 18syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  Y  e.  ( Base `  K ) )
20 simpr1 989 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  e.  ( LPlanes `  K ) )
213, 8lplnbase 32866 . . . . . . . 8  |-  ( z  e.  ( LPlanes `  K
)  ->  z  e.  ( Base `  K )
)
2220, 21syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  e.  ( Base `  K ) )
23 simpr2 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z (  <o  `  K
) X )
24 simpl1 986 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  K  e.  HL )
25 lvolcmp.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
263, 25, 7cvrle 32611 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  z  e.  ( Base `  K )  /\  X  e.  ( Base `  K
) )  /\  z
(  <o  `  K ) X )  ->  z  .<_  X )
2724, 22, 16, 23, 26syl31anc 1216 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  .<_  X )
283, 25postr 15119 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
z  e.  ( Base `  K )  /\  X  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
) )  ->  (
( z  .<_  X  /\  X  .<_  Y )  -> 
z  .<_  Y ) )
2915, 22, 16, 19, 28syl13anc 1215 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
( ( z  .<_  X  /\  X  .<_  Y )  ->  z  .<_  Y ) )
3027, 12, 29mp2and 674 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  .<_  Y )
3125, 7, 8, 4lplncvrlvol2 32947 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  z  e.  ( LPlanes `  K )  /\  Y  e.  V )  /\  z  .<_  Y )  ->  z
(  <o  `  K ) Y )
3224, 20, 17, 30, 31syl31anc 1216 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z (  <o  `  K
) Y )
333, 25, 7cvrcmp 32616 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  /\  ( z
(  <o  `  K ) X  /\  z (  <o  `  K ) Y ) )  ->  ( X  .<_  Y  <->  X  =  Y
) )
3415, 16, 19, 22, 23, 32, 33syl132anc 1231 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
( X  .<_  Y  <->  X  =  Y ) )
3512, 34mpbid 210 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  /\  ( z  e.  (
LPlanes `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  X  =  Y )
36353exp2 1200 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( z  e.  (
LPlanes `  K )  -> 
( z (  <o  `  K ) X  -> 
( X  .<_  Y  ->  X  =  Y )
) ) )
3736rexlimdv 2838 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( E. z  e.  ( LPlanes `  K )
z (  <o  `  K
) X  ->  ( X  .<_  Y  ->  X  =  Y ) ) )
3811, 37mpd 15 . 2  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .<_  Y  ->  X  =  Y )
)
393, 25posref 15117 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  ( Base `  K
) )  ->  X  .<_  X )
4014, 6, 39syl2anc 656 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  X  .<_  X )
41 breq2 4293 . . 3  |-  ( X  =  Y  ->  ( X  .<_  X  <->  X  .<_  Y ) )
4240, 41syl5ibcom 220 . 2  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  =  Y  ->  X  .<_  Y ) )
4338, 42impbid 191 1  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .<_  Y  <->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   E.wrex 2714   class class class wbr 4289   ` cfv 5415   Basecbs 14170   lecple 14241   Posetcpo 15106    <o ccvr 32595   HLchlt 32683   LPlanesclpl 32824   LVolsclvol 32825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-lat 15212  df-clat 15274  df-oposet 32509  df-ol 32511  df-oml 32512  df-covers 32599  df-ats 32600  df-atl 32631  df-cvlat 32655  df-hlat 32684  df-llines 32830  df-lplanes 32831  df-lvols 32832
This theorem is referenced by:  lvolnltN  32950  2lplnja  32951
  Copyright terms: Public domain W3C validator