MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubval Structured version   Visualization version   GIF version

Theorem lubval 16807
Description: Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
lubval.b 𝐵 = (Base‘𝐾)
lubval.l = (le‘𝐾)
lubval.u 𝑈 = (lub‘𝐾)
lubval.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubval.k (𝜑𝐾𝑉)
lubval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
lubval (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubval.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubval.l . . . . 5 = (le‘𝐾)
3 lubval.u . . . . 5 𝑈 = (lub‘𝐾)
4 biid 250 . . . . 5 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubval.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 480 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝐾𝑉)
71, 2, 3, 4, 6lubfval 16801 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
87fveq1d 6105 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆))
9 lubval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
10 simpr 476 . . . . . 6 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ dom 𝑈)
111, 2, 3, 9, 6, 10lubeu 16806 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → ∃!𝑥𝐵 𝜓)
12 raleq 3115 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
13 raleq 3115 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
1413imbi1d 330 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514ralbidv 2969 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1612, 15anbi12d 743 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1716, 9syl6bbr 277 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ 𝜓))
1817reubidv 3103 . . . . . . 7 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1918elabg 3320 . . . . . 6 (𝑆 ∈ dom 𝑈 → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2019adantl 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2111, 20mpbird 246 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
22 fvres 6117 . . . 4 (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
2321, 22syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
24 lubval.s . . . . . 6 (𝜑𝑆𝐵)
2524adantr 480 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆𝐵)
26 fvex 6113 . . . . . . 7 (Base‘𝐾) ∈ V
271, 26eqeltri 2684 . . . . . 6 𝐵 ∈ V
2827elpw2 4755 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2925, 28sylibr 223 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ 𝒫 𝐵)
3017riotabidv 6513 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 𝜓))
31 eqid 2610 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
32 riotaex 6515 . . . . 5 (𝑥𝐵 𝜓) ∈ V
3330, 31, 32fvmpt 6191 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
3429, 33syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
358, 23, 343eqtrd 2648 . 2 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
36 ndmfv 6128 . . . 4 𝑆 ∈ dom 𝑈 → (𝑈𝑆) = ∅)
3736adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = ∅)
381, 2, 3, 9, 5lubeldm 16804 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3938biimprd 237 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝑈))
4024, 39mpand 707 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝑈))
4140con3dimp 456 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → ¬ ∃!𝑥𝐵 𝜓)
42 riotaund 6546 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
4341, 42syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑥𝐵 𝜓) = ∅)
4437, 43eqtr4d 2647 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
4535, 44pm2.61dan 828 1 (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  ∃!wreu 2898  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  cfv 5804  crio 6510  Basecbs 15695  lecple 15775  lubclub 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-lub 16797
This theorem is referenced by:  lubcl  16808  lubprop  16809  lubid  16813  joinval2  16832  lubun  16946  poslubd  16971  toslub  28999  lub0N  33494  glbconN  33681
  Copyright terms: Public domain W3C validator