Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubcl | Structured version Visualization version GIF version |
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
lubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
lubcl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lubcl.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Ref | Expression |
---|---|
lubcl | ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2610 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | lubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
4 | biid 250 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) | |
5 | lubcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | lubcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 1, 2, 3, 5, 6 | lubelss 16805 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | 1, 2, 3, 4, 5, 7 | lubval 16807 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)))) |
9 | 1, 2, 3, 4, 5, 6 | lubeu 16806 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) |
10 | riotacl 6525 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) ∈ 𝐵) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) ∈ 𝐵) |
12 | 8, 11 | eqeltrd 2688 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃!wreu 2898 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 ℩crio 6510 Basecbs 15695 lecple 15775 lubclub 16765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-lub 16797 |
This theorem is referenced by: lubprop 16809 joincl 16829 clatlem 16934 op1cl 33490 |
Copyright terms: Public domain | W3C validator |