Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnid Structured version   Visualization version   GIF version

Theorem ltrnid 34439
Description: A lattice translation is the identity function iff all atoms not under the fiducial co-atom 𝑊 are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp-4l 802 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐾 ∈ HL)
2 ltrneq.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 eqid 2610 . . . . . . . . 9 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrneq.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 34427 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
65ad2antrr 758 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simpr 476 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝑥𝐵)
8 simplll 794 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simpllr 795 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝐹𝑇)
10 ltrneq.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
11 ltrneq.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
1210, 11atbase 33594 . . . . . . . . . . . . . 14 (𝑝𝐴𝑝𝐵)
1312ad2antlr 759 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝𝐵)
14 simpr 476 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝 𝑊)
15 ltrneq.l . . . . . . . . . . . . . 14 = (le‘𝐾)
1610, 15, 2, 4ltrnval1 34438 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐵𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
178, 9, 13, 14, 16syl112anc 1322 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐹𝑝) = 𝑝)
1817ex 449 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = 𝑝))
19 pm2.61 182 . . . . . . . . . . 11 ((𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2018, 19syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2120ralimdva 2945 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝))
2221imp 444 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2322adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2410, 11, 3lauteq 34399 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝑥𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑥) = 𝑥)
251, 6, 7, 23, 24syl31anc 1321 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = 𝑥)
26 fvresi 6344 . . . . . . 7 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2726adantl 481 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2825, 27eqtr4d 2647 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
2928ralrimiva 2949 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
3010, 2, 4ltrn1o 34428 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
3130adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹:𝐵1-1-onto𝐵)
32 f1ofn 6051 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹 Fn 𝐵)
3331, 32syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 Fn 𝐵)
34 fnresi 5922 . . . . 5 ( I ↾ 𝐵) Fn 𝐵
35 eqfnfv 6219 . . . . 5 ((𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵) Fn 𝐵) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3633, 34, 35sylancl 693 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3729, 36mpbird 246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 = ( I ↾ 𝐵))
3837ex 449 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → 𝐹 = ( I ↾ 𝐵)))
3912adantl 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → 𝑝𝐵)
40 fvresi 6344 . . . . . 6 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
4139, 40syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
42 fveq1 6102 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = (( I ↾ 𝐵)‘𝑝))
4342eqeq1d 2612 . . . . 5 (𝐹 = ( I ↾ 𝐵) → ((𝐹𝑝) = 𝑝 ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
4441, 43syl5ibrcom 236 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = 𝑝))
4544a1dd 48 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4645ralrimdva 2952 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4738, 46impbid 201 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583   I cid 4948  cres 5040   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  Basecbs 15695  lecple 15775  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LAutclaut 34289  LTrncltrn 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-laut 34293  df-ldil 34408  df-ltrn 34409
This theorem is referenced by:  ltrnnid  34440
  Copyright terms: Public domain W3C validator