Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless2 Structured version   Visualization version   GIF version

Theorem lsmless2 17898
 Description: Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))

Proof of Theorem lsmless2
StepHypRef Expression
1 subgrcl 17422 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
213ad2ant1 1075 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝐺 ∈ Grp)
3 eqid 2610 . . . 4 (Base‘𝐺) = (Base‘𝐺)
43subgss 17418 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
543ad2ant1 1075 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝑆 ⊆ (Base‘𝐺))
63subgss 17418 . . 3 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1076 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝑈 ⊆ (Base‘𝐺))
8 simp3 1056 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝑇𝑈)
9 lsmub1.p . . 3 = (LSSum‘𝐺)
103, 9lsmless2x 17883 . 2 (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
112, 5, 7, 8, 10syl31anc 1321 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Grpcgrp 17245  SubGrpcsubg 17411  LSSumclsm 17872 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-subg 17414  df-lsm 17874 This theorem is referenced by:  lsmless12  17899  lsmmod  17911  lsmelval2  18906  lsmsat  33313  lsatcvat3  33357  cdlemn5pre  35507  dvh3dim3N  35756
 Copyright terms: Public domain W3C validator