MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmnrp Structured version   Visualization version   GIF version

Theorem logdmnrp 24187
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmnrp (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)

Proof of Theorem logdmnrp
StepHypRef Expression
1 eldifn 3695 . . 3 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0))
2 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
31, 2eleq2s 2706 . 2 (𝐴𝐷 → ¬ 𝐴 ∈ (-∞(,]0))
4 rpre 11715 . . . . 5 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
52ellogdm 24185 . . . . . . 7 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 475 . . . . . 6 (𝐴𝐷𝐴 ∈ ℂ)
7 negreb 10225 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
86, 7syl 17 . . . . 5 (𝐴𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
94, 8syl5ib 233 . . . 4 (𝐴𝐷 → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
109imp 444 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
11 mnflt 11833 . . . 4 (𝐴 ∈ ℝ → -∞ < 𝐴)
1210, 11syl 17 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴)
13 rpgt0 11720 . . . . . 6 (-𝐴 ∈ ℝ+ → 0 < -𝐴)
1413adantl 481 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴)
1510lt0neg1d 10476 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴))
1614, 15mpbird 246 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0)
17 0re 9919 . . . . 5 0 ∈ ℝ
18 ltle 10005 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
1910, 17, 18sylancl 693 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0))
2016, 19mpd 15 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0)
21 mnfxr 9975 . . . 4 -∞ ∈ ℝ*
22 elioc2 12107 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
2321, 17, 22mp2an 704 . . 3 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
2410, 12, 20, 23syl3anbrc 1239 . 2 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0))
253, 24mtand 689 1 (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  -cneg 10146  +crp 11708  (,]cioc 12047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-rp 11709  df-ioc 12051
This theorem is referenced by:  dvloglem  24194  logf1o2  24196
  Copyright terms: Public domain W3C validator