Proof of Theorem lnnat
Step | Hyp | Ref
| Expression |
1 | | simpl1 1057 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
2 | | simpl2 1058 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) |
3 | | eqid 2610 |
. . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) |
4 | | eqid 2610 |
. . . . . . 7
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
5 | | lnnat.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 3, 4, 5 | atcvr0 33593 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
7 | 1, 2, 6 | syl2anc 691 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
8 | | lnnat.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
9 | 8, 4, 5 | atcvr1 33721 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
10 | 9 | biimpa 500 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) |
11 | | hlop 33667 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
12 | | eqid 2610 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
13 | 12, 3 | op0cl 33489 |
. . . . . . 7
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈
(Base‘𝐾)) |
14 | 1, 11, 13 | 3syl 18 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (0.‘𝐾) ∈ (Base‘𝐾)) |
15 | 12, 5 | atbase 33594 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
16 | 2, 15 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) |
17 | | hllat 33668 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
18 | 1, 17 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) |
19 | | simpl3 1059 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
20 | 12, 5 | atbase 33594 |
. . . . . . . 8
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) |
22 | 12, 8 | latjcl 16874 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
23 | 18, 16, 21, 22 | syl3anc 1318 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
24 | 12, 4 | cvrntr 33729 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧
((0.‘𝐾) ∈
(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
25 | 1, 14, 16, 23, 24 | syl13anc 1320 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
26 | 7, 10, 25 | mp2and 711 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) |
27 | | simpll1 1093 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑄) ∈ 𝐴) → 𝐾 ∈ HL) |
28 | 3, 4, 5 | atcvr0 33593 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) |
29 | 27, 28 | sylancom 698 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) |
30 | 26, 29 | mtand 689 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) |
31 | 30 | ex 449 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴)) |
32 | 8, 5 | hlatjidm 33673 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
33 | 32 | 3adant3 1074 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
34 | | simp2 1055 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
35 | 33, 34 | eqeltrd 2688 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑃) ∈ 𝐴) |
36 | | oveq2 6557 |
. . . . 5
⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄)) |
37 | 36 | eleq1d 2672 |
. . . 4
⊢ (𝑃 = 𝑄 → ((𝑃 ∨ 𝑃) ∈ 𝐴 ↔ (𝑃 ∨ 𝑄) ∈ 𝐴)) |
38 | 35, 37 | syl5ibcom 234 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) ∈ 𝐴)) |
39 | 38 | necon3bd 2796 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ (𝑃 ∨ 𝑄) ∈ 𝐴 → 𝑃 ≠ 𝑄)) |
40 | 31, 39 | impbid 201 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ¬ (𝑃 ∨ 𝑄) ∈ 𝐴)) |