Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0eq Structured version   Visualization version   GIF version

Theorem atcvr0eq 33730
Description: The covers relation is not transitive. (atcv0eq 28622 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvr0eq.j = (join‘𝐾)
atcvr0eq.z 0 = (0.‘𝐾)
atcvr0eq.c 𝐶 = ( ⋖ ‘𝐾)
atcvr0eq.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvr0eq ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))

Proof of Theorem atcvr0eq
StepHypRef Expression
1 atcvr0eq.j . . . . . 6 = (join‘𝐾)
2 atcvr0eq.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
3 atcvr0eq.a . . . . . 6 𝐴 = (Atoms‘𝐾)
41, 2, 3atcvr1 33721 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃𝐶(𝑃 𝑄)))
5 atcvr0eq.z . . . . . . . 8 0 = (0.‘𝐾)
65, 2, 3atcvr0 33593 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → 0 𝐶𝑃)
763adant3 1074 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 𝐶𝑃)
87biantrurd 528 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝐶(𝑃 𝑄) ↔ ( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄))))
94, 8bitrd 267 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄))))
10 simp1 1054 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ HL)
11 hlop 33667 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
12113ad2ant1 1075 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ OP)
13 eqid 2610 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1413, 5op0cl 33489 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 ∈ (Base‘𝐾))
1613, 3atbase 33594 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
17163ad2ant2 1076 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ∈ (Base‘𝐾))
1813, 1, 3hlatjcl 33671 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
1913, 2cvrntr 33729 . . . . 5 ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄)) → ¬ 0 𝐶(𝑃 𝑄)))
2010, 15, 17, 18, 19syl13anc 1320 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄)) → ¬ 0 𝐶(𝑃 𝑄)))
219, 20sylbid 229 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ 0 𝐶(𝑃 𝑄)))
2221necon4ad 2801 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
231, 3hlatjidm 33673 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
24233adant3 1074 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
257, 24breqtrrd 4611 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 𝐶(𝑃 𝑃))
26 oveq2 6557 . . . 4 (𝑃 = 𝑄 → (𝑃 𝑃) = (𝑃 𝑄))
2726breq2d 4595 . . 3 (𝑃 = 𝑄 → ( 0 𝐶(𝑃 𝑃) ↔ 0 𝐶(𝑃 𝑄)))
2825, 27syl5ibcom 234 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄0 𝐶(𝑃 𝑄)))
2922, 28impbid 201 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  joincjn 16767  0.cp0 16860  OPcops 33477  ccvr 33567  Atomscatm 33568  HLchlt 33655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656
This theorem is referenced by:  atcvrj0  33732
  Copyright terms: Public domain W3C validator