MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmf1o Structured version   Visualization version   GIF version

Theorem lmhmf1o 18867
Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
lmhmf1o.x 𝑋 = (Base‘𝑆)
lmhmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
lmhmf1o (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 LMHom 𝑆)))

Proof of Theorem lmhmf1o
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmf1o.y . . 3 𝑌 = (Base‘𝑇)
2 eqid 2610 . . 3 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3 eqid 2610 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
4 eqid 2610 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
5 eqid 2610 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
6 eqid 2610 . . 3 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
7 lmhmlmod2 18853 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
87adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝑇 ∈ LMod)
9 lmhmlmod1 18854 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
109adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝑆 ∈ LMod)
115, 4lmhmsca 18851 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
1211eqcomd 2616 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
1312adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (Scalar‘𝑆) = (Scalar‘𝑇))
14 lmghm 18852 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
15 lmhmf1o.x . . . . . 6 𝑋 = (Base‘𝑆)
1615, 1ghmf1o 17513 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
1714, 16syl 17 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
1817biimpa 500 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
19 simpll 786 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2013fveq2d 6107 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇)))
2120eleq2d 2673 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑎 ∈ (Base‘(Scalar‘𝑆)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑇))))
2221biimpar 501 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2322adantrr 749 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
24 f1ocnv 6062 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
25 f1of 6050 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
2624, 25syl 17 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
2726adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
2827ffvelrnda 6267 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑏𝑌) → (𝐹𝑏) ∈ 𝑋)
2928adantrl 748 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹𝑏) ∈ 𝑋)
30 eqid 2610 . . . . . . 7 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
315, 30, 15, 3, 2lmhmlin 18856 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑏) ∈ 𝑋) → (𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)(𝐹‘(𝐹𝑏))))
3219, 23, 29, 31syl3anc 1318 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)(𝐹‘(𝐹𝑏))))
33 f1ocnvfv2 6433 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝑏𝑌) → (𝐹‘(𝐹𝑏)) = 𝑏)
3433ad2ant2l 778 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝐹𝑏)) = 𝑏)
3534oveq2d 6565 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝑎( ·𝑠𝑇)(𝐹‘(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏))
3632, 35eqtrd 2644 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏))
37 simplr 788 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝐹:𝑋1-1-onto𝑌)
3810adantr 480 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝑆 ∈ LMod)
3915, 5, 3, 30lmodvscl 18703 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑏) ∈ 𝑋) → (𝑎( ·𝑠𝑆)(𝐹𝑏)) ∈ 𝑋)
4038, 23, 29, 39syl3anc 1318 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝑎( ·𝑠𝑆)(𝐹𝑏)) ∈ 𝑋)
41 f1ocnvfv 6434 . . . . 5 ((𝐹:𝑋1-1-onto𝑌 ∧ (𝑎( ·𝑠𝑆)(𝐹𝑏)) ∈ 𝑋) → ((𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏) → (𝐹‘(𝑎( ·𝑠𝑇)𝑏)) = (𝑎( ·𝑠𝑆)(𝐹𝑏))))
4237, 40, 41syl2anc 691 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → ((𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏) → (𝐹‘(𝑎( ·𝑠𝑇)𝑏)) = (𝑎( ·𝑠𝑆)(𝐹𝑏))))
4336, 42mpd 15 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝑎( ·𝑠𝑇)𝑏)) = (𝑎( ·𝑠𝑆)(𝐹𝑏)))
441, 2, 3, 4, 5, 6, 8, 10, 13, 18, 43islmhmd 18860 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 LMHom 𝑆))
4515, 1lmhmf 18855 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑋𝑌)
46 ffn 5958 . . . . 5 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
4745, 46syl 17 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn 𝑋)
4847adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹 Fn 𝑋)
491, 15lmhmf 18855 . . . . 5 (𝐹 ∈ (𝑇 LMHom 𝑆) → 𝐹:𝑌𝑋)
5049adantl 481 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹:𝑌𝑋)
51 ffn 5958 . . . 4 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
5250, 51syl 17 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹 Fn 𝑌)
53 dff1o4 6058 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
5448, 52, 53sylanbrc 695 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
5544, 54impbida 873 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 LMHom 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  ccnv 5037   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772   GrpHom cghm 17480  LModclmod 18686   LMHom clmhm 18840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ghm 17481  df-lmod 18688  df-lmhm 18843
This theorem is referenced by:  islmim2  18887
  Copyright terms: Public domain W3C validator