Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmhmsca | Structured version Visualization version GIF version |
Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlem.k | ⊢ 𝐾 = (Scalar‘𝑆) |
lmhmlem.l | ⊢ 𝐿 = (Scalar‘𝑇) |
Ref | Expression |
---|---|
lmhmsca | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlem.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | lmhmlem.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | 1, 2 | lmhmlem 18850 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
4 | 3 | simprrd 793 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 Scalarcsca 15771 GrpHom cghm 17480 LModclmod 18686 LMHom clmhm 18840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-lmhm 18843 |
This theorem is referenced by: islmhm2 18859 lmhmco 18864 lmhmplusg 18865 lmhmvsca 18866 lmhmf1o 18867 lmhmima 18868 lmhmpreima 18869 reslmhm 18873 reslmhm2 18874 reslmhm2b 18875 lindfmm 19985 lmhmclm 22695 nmoleub2lem3 22723 nmoleub3 22727 |
Copyright terms: Public domain | W3C validator |