MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmco Structured version   Visualization version   GIF version

Theorem lmhmco 18864
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Assertion
Ref Expression
lmhmco ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))

Proof of Theorem lmhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2610 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2610 . 2 ( ·𝑠𝑂) = ( ·𝑠𝑂)
4 eqid 2610 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2610 . 2 (Scalar‘𝑂) = (Scalar‘𝑂)
6 eqid 2610 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 18854 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
87adantl 481 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 18853 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝑂 ∈ LMod)
109adantr 480 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑂 ∈ LMod)
11 eqid 2610 . . . 4 (Scalar‘𝑁) = (Scalar‘𝑁)
1211, 5lmhmsca 18851 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → (Scalar‘𝑂) = (Scalar‘𝑁))
134, 11lmhmsca 18851 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀))
1412, 13sylan9eq 2664 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑂) = (Scalar‘𝑀))
15 lmghm 18852 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝐹 ∈ (𝑁 GrpHom 𝑂))
16 lmghm 18852 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
17 ghmco 17503 . . 3 ((𝐹 ∈ (𝑁 GrpHom 𝑂) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
1815, 16, 17syl2an 493 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
19 simplr 788 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁))
20 simprl 790 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
21 simprr 792 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
22 eqid 2610 . . . . . . 7 ( ·𝑠𝑁) = ( ·𝑠𝑁)
234, 6, 1, 2, 22lmhmlin 18856 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2419, 20, 21, 23syl3anc 1318 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2524fveq2d 6107 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))))
26 simpll 786 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑁 LMHom 𝑂))
2713fveq2d 6107 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2827ad2antlr 759 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2920, 28eleqtrrd 2691 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁)))
30 eqid 2610 . . . . . . . . 9 (Base‘𝑁) = (Base‘𝑁)
311, 30lmhmf 18855 . . . . . . . 8 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3231adantl 481 . . . . . . 7 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3332ffvelrnda 6267 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3433adantrl 748 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
35 eqid 2610 . . . . . 6 (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁))
3611, 35, 30, 22, 3lmhmlin 18856 . . . . 5 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐺𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3726, 29, 34, 36syl3anc 1318 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3825, 37eqtrd 2644 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
39 ffn 5958 . . . . . 6 (𝐺:(Base‘𝑀)⟶(Base‘𝑁) → 𝐺 Fn (Base‘𝑀))
4032, 39syl 17 . . . . 5 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
4140adantr 480 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀))
427ad2antlr 759 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod)
431, 4, 2, 6lmodvscl 18703 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
4442, 20, 21, 43syl3anc 1318 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
45 fvco2 6183 . . . 4 ((𝐺 Fn (Base‘𝑀) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀)) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
4641, 44, 45syl2anc 691 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
47 fvco2 6183 . . . . 5 ((𝐺 Fn (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4841, 21, 47syl2anc 691 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4948oveq2d 6565 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
5038, 46, 493eqtr4d 2654 . 2 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)))
511, 2, 3, 4, 5, 6, 8, 10, 14, 18, 50islmhmd 18860 1 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772   GrpHom cghm 17480  LModclmod 18686   LMHom clmhm 18840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-lmod 18688  df-lmhm 18843
This theorem is referenced by:  lmimco  20002  nmhmco  22370  mendring  36781
  Copyright terms: Public domain W3C validator