Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendring Structured version   Visualization version   GIF version

Theorem mendring 36781
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
Assertion
Ref Expression
mendring (𝑀 ∈ LMod → 𝐴 ∈ Ring)

Proof of Theorem mendring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 36773 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 (𝑀 ∈ LMod → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 eqidd 2611 . 2 (𝑀 ∈ LMod → (+g𝐴) = (+g𝐴))
5 eqidd 2611 . 2 (𝑀 ∈ LMod → (.r𝐴) = (.r𝐴))
6 eqid 2610 . . . . . 6 (+g𝑀) = (+g𝑀)
7 eqid 2610 . . . . . 6 (+g𝐴) = (+g𝐴)
81, 2, 6, 7mendplusg 36775 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) = (𝑥𝑓 (+g𝑀)𝑦))
96lmhmplusg 18865 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑓 (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
108, 9eqeltrd 2688 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
11103adant1 1072 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
12 simpr1 1060 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 LMHom 𝑀))
13 simpr2 1061 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
1412, 13, 9syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑓 (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
15 simpr3 1062 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
161, 2, 6, 7mendplusg 36775 . . . . 5 (((𝑥𝑓 (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑓 (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥𝑓 (+g𝑀)𝑦) ∘𝑓 (+g𝑀)𝑧))
1714, 15, 16syl2anc 691 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑓 (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥𝑓 (+g𝑀)𝑦) ∘𝑓 (+g𝑀)𝑧))
1812, 13, 8syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)𝑦) = (𝑥𝑓 (+g𝑀)𝑦))
1918oveq1d 6564 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = ((𝑥𝑓 (+g𝑀)𝑦)(+g𝐴)𝑧))
206lmhmplusg 18865 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦𝑓 (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
2113, 15, 20syl2anc 691 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑓 (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
221, 2, 6, 7mendplusg 36775 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑓 (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)(𝑦𝑓 (+g𝑀)𝑧)) = (𝑥𝑓 (+g𝑀)(𝑦𝑓 (+g𝑀)𝑧)))
2312, 21, 22syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦𝑓 (+g𝑀)𝑧)) = (𝑥𝑓 (+g𝑀)(𝑦𝑓 (+g𝑀)𝑧)))
241, 2, 6, 7mendplusg 36775 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) = (𝑦𝑓 (+g𝑀)𝑧))
2513, 15, 24syl2anc 691 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) = (𝑦𝑓 (+g𝑀)𝑧))
2625oveq2d 6565 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(+g𝐴)(𝑦𝑓 (+g𝑀)𝑧)))
27 lmodgrp 18693 . . . . . . . 8 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
28 grpmnd 17252 . . . . . . . 8 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2927, 28syl 17 . . . . . . 7 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
3029adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ Mnd)
31 eqid 2610 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
3231, 31lmhmf 18855 . . . . . . . 8 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3312, 32syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
34 fvex 6113 . . . . . . . 8 (Base‘𝑀) ∈ V
3534, 34elmap 7772 . . . . . . 7 (𝑥 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)) ↔ 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3633, 35sylibr 223 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)))
3731, 31lmhmf 18855 . . . . . . . 8 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3813, 37syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3934, 34elmap 7772 . . . . . . 7 (𝑦 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)) ↔ 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
4038, 39sylibr 223 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)))
4131, 31lmhmf 18855 . . . . . . . 8 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4215, 41syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4334, 34elmap 7772 . . . . . . 7 (𝑧 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)) ↔ 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4442, 43sylibr 223 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)))
4531, 6mndvass 20017 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑥 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)) ∧ 𝑦 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)))) → ((𝑥𝑓 (+g𝑀)𝑦) ∘𝑓 (+g𝑀)𝑧) = (𝑥𝑓 (+g𝑀)(𝑦𝑓 (+g𝑀)𝑧)))
4630, 36, 40, 44, 45syl13anc 1320 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑓 (+g𝑀)𝑦) ∘𝑓 (+g𝑀)𝑧) = (𝑥𝑓 (+g𝑀)(𝑦𝑓 (+g𝑀)𝑧)))
4723, 26, 463eqtr4d 2654 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥𝑓 (+g𝑀)𝑦) ∘𝑓 (+g𝑀)𝑧))
4817, 19, 473eqtr4d 2654 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)))
49 id 22 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ LMod)
50 eqidd 2611 . . . 4 (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀))
51 eqid 2610 . . . . 5 (0g𝑀) = (0g𝑀)
52 eqid 2610 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
5351, 31, 52, 520lmhm 18861 . . . 4 ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ (Scalar‘𝑀) = (Scalar‘𝑀)) → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
5449, 49, 50, 53syl3anc 1318 . . 3 (𝑀 ∈ LMod → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
551, 2, 6, 7mendplusg 36775 . . . . 5 ((((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘𝑓 (+g𝑀)𝑥))
5654, 55sylan 487 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘𝑓 (+g𝑀)𝑥))
5732, 35sylibr 223 . . . . 5 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)))
5831, 6, 51mndvlid 20018 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀))) → (((Base‘𝑀) × {(0g𝑀)}) ∘𝑓 (+g𝑀)𝑥) = 𝑥)
5929, 57, 58syl2an 493 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)}) ∘𝑓 (+g𝑀)𝑥) = 𝑥)
6056, 59eqtrd 2644 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = 𝑥)
61 eqid 2610 . . . . 5 (invg𝑀) = (invg𝑀)
6261invlmhm 18863 . . . 4 (𝑀 ∈ LMod → (invg𝑀) ∈ (𝑀 LMHom 𝑀))
63 lmhmco 18864 . . . 4 (((invg𝑀) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
6462, 63sylan 487 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
651, 2, 6, 7mendplusg 36775 . . . . 5 ((((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘𝑓 (+g𝑀)𝑥))
6664, 65sylancom 698 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘𝑓 (+g𝑀)𝑥))
6731, 6, 61, 51grpvlinv 20020 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑥 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀))) → (((invg𝑀) ∘ 𝑥) ∘𝑓 (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6827, 57, 67syl2an 493 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥) ∘𝑓 (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6966, 68eqtrd 2644 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
703, 4, 11, 48, 54, 60, 64, 69isgrpd 17267 . 2 (𝑀 ∈ LMod → 𝐴 ∈ Grp)
71 eqid 2610 . . . . 5 (.r𝐴) = (.r𝐴)
721, 2, 71mendmulr 36777 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
73 lmhmco 18864 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
7472, 73eqeltrd 2688 . . 3 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
75743adant1 1072 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
76 coass 5571 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
7712, 13, 72syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
7877oveq1d 6564 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦)(.r𝐴)𝑧))
7912, 13, 73syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
801, 2, 71mendmulr 36777 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8179, 15, 80syl2anc 691 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8278, 81eqtrd 2644 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
831, 2, 71mendmulr 36777 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8413, 15, 83syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8584oveq2d 6565 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦𝑧)))
86 lmhmco 18864 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
8713, 15, 86syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
881, 2, 71mendmulr 36777 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8912, 87, 88syl2anc 691 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
9085, 89eqtrd 2644 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦𝑧)))
9176, 82, 903eqtr4a 2670 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)))
921, 2, 71mendmulr 36777 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑓 (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦𝑓 (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦𝑓 (+g𝑀)𝑧)))
9312, 21, 92syl2anc 691 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦𝑓 (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦𝑓 (+g𝑀)𝑧)))
9425oveq2d 6565 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦𝑓 (+g𝑀)𝑧)))
95 lmhmco 18864 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
9612, 15, 95syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
971, 2, 6, 7mendplusg 36775 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘𝑓 (+g𝑀)(𝑥𝑧)))
9879, 96, 97syl2anc 691 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘𝑓 (+g𝑀)(𝑥𝑧)))
991, 2, 71mendmulr 36777 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
10012, 15, 99syl2anc 691 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
10177, 100oveq12d 6567 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = ((𝑥𝑦)(+g𝐴)(𝑥𝑧)))
102 lmghm 18852 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 GrpHom 𝑀))
103 ghmmhm 17493 . . . . . 6 (𝑥 ∈ (𝑀 GrpHom 𝑀) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10412, 102, 1033syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10531, 6, 6mhmvlin 20022 . . . . 5 ((𝑥 ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑𝑚 (Base‘𝑀))) → (𝑥 ∘ (𝑦𝑓 (+g𝑀)𝑧)) = ((𝑥𝑦) ∘𝑓 (+g𝑀)(𝑥𝑧)))
106104, 40, 44, 105syl3anc 1318 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ (𝑦𝑓 (+g𝑀)𝑧)) = ((𝑥𝑦) ∘𝑓 (+g𝑀)(𝑥𝑧)))
10798, 101, 1063eqtr4d 2654 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦𝑓 (+g𝑀)𝑧)))
10893, 94, 1073eqtr4d 2654 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)))
1091, 2, 71mendmulr 36777 . . . 4 (((𝑥𝑓 (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑓 (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥𝑓 (+g𝑀)𝑦) ∘ 𝑧))
11014, 15, 109syl2anc 691 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑓 (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥𝑓 (+g𝑀)𝑦) ∘ 𝑧))
11118oveq1d 6564 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑓 (+g𝑀)𝑦)(.r𝐴)𝑧))
1121, 2, 6, 7mendplusg 36775 . . . . 5 (((𝑥𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘𝑓 (+g𝑀)(𝑦𝑧)))
11396, 87, 112syl2anc 691 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘𝑓 (+g𝑀)(𝑦𝑧)))
114100, 84oveq12d 6567 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥𝑧)(+g𝐴)(𝑦𝑧)))
115 ffn 5958 . . . . . 6 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → 𝑥 Fn (Base‘𝑀))
11612, 32, 1153syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 Fn (Base‘𝑀))
117 ffn 5958 . . . . . 6 (𝑦:(Base‘𝑀)⟶(Base‘𝑀) → 𝑦 Fn (Base‘𝑀))
11813, 37, 1173syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 Fn (Base‘𝑀))
11934a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
120 inidm 3784 . . . . 5 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
121116, 118, 42, 119, 119, 119, 120ofco 6815 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑓 (+g𝑀)𝑦) ∘ 𝑧) = ((𝑥𝑧) ∘𝑓 (+g𝑀)(𝑦𝑧)))
122113, 114, 1213eqtr4d 2654 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥𝑓 (+g𝑀)𝑦) ∘ 𝑧))
123110, 111, 1223eqtr4d 2654 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)))
12431idlmhm 18862 . 2 (𝑀 ∈ LMod → ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀))
1251, 2, 71mendmulr 36777 . . . 4 ((( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
126124, 125sylan 487 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
12732adantl 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
128 fcoi2 5992 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
129127, 128syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
130126, 129eqtrd 2644 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = 𝑥)
131 id 22 . . . 4 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 LMHom 𝑀))
1321, 2, 71mendmulr 36777 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
133131, 124, 132syl2anr 494 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
134 fcoi1 5991 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
135127, 134syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
136133, 135eqtrd 2644 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = 𝑥)
1373, 4, 5, 70, 75, 91, 108, 123, 124, 130, 136isringd 18408 1 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125   I cid 4948   × cxp 5036  cres 5040  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771  0gc0g 15923  Mndcmnd 17117   MndHom cmhm 17156  Grpcgrp 17245  invgcminusg 17246   GrpHom cghm 17480  Ringcrg 18370  LModclmod 18686   LMHom clmhm 18840  MEndocmend 36764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lmhm 18843  df-mend 36765
This theorem is referenced by:  mendlmod  36782  mendassa  36783
  Copyright terms: Public domain W3C validator