MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmf1o Structured version   Unicode version

Theorem lmhmf1o 17130
Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
lmhmf1o.x  |-  X  =  ( Base `  S
)
lmhmf1o.y  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
lmhmf1o  |-  ( F  e.  ( S LMHom  T
)  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T LMHom  S ) ) )

Proof of Theorem lmhmf1o
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmf1o.y . . 3  |-  Y  =  ( Base `  T
)
2 eqid 2443 . . 3  |-  ( .s
`  T )  =  ( .s `  T
)
3 eqid 2443 . . 3  |-  ( .s
`  S )  =  ( .s `  S
)
4 eqid 2443 . . 3  |-  (Scalar `  T )  =  (Scalar `  T )
5 eqid 2443 . . 3  |-  (Scalar `  S )  =  (Scalar `  S )
6 eqid 2443 . . 3  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
7 lmhmlmod2 17116 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
87adantr 465 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  T  e.  LMod )
9 lmhmlmod1 17117 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
109adantr 465 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  S  e.  LMod )
115, 4lmhmsca 17114 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
1211eqcomd 2448 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  S
)  =  (Scalar `  T ) )
1312adantr 465 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  (Scalar `  S )  =  (Scalar `  T ) )
14 lmghm 17115 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
15 lmhmf1o.x . . . . . 6  |-  X  =  ( Base `  S
)
1615, 1ghmf1o 15779 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T  GrpHom  S ) ) )
1714, 16syl 16 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T  GrpHom  S ) ) )
1817biimpa 484 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  `' F  e.  ( T  GrpHom  S ) )
19 simpll 753 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  ->  F  e.  ( S LMHom  T ) )
2013fveq2d 5698 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  ( Base `  (Scalar `  S
) )  =  (
Base `  (Scalar `  T
) ) )
2120eleq2d 2510 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  (
a  e.  ( Base `  (Scalar `  S )
)  <->  a  e.  (
Base `  (Scalar `  T
) ) ) )
2221biimpar 485 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  a  e.  ( Base `  (Scalar `  T ) ) )  ->  a  e.  (
Base `  (Scalar `  S
) ) )
2322adantrr 716 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
24 f1ocnv 5656 . . . . . . . . . 10  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
25 f1of 5644 . . . . . . . . . 10  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
2624, 25syl 16 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y --> X )
2726adantl 466 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  `' F : Y --> X )
2827ffvelrnda 5846 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  b  e.  Y )  ->  ( `' F `  b )  e.  X )
2928adantrl 715 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( `' F `  b )  e.  X
)
30 eqid 2443 . . . . . . 7  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
315, 30, 15, 3, 2lmhmlin 17119 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  ( `' F `  b )  e.  X )  -> 
( F `  (
a ( .s `  S ) ( `' F `  b ) ) )  =  ( a ( .s `  T ) ( F `
 ( `' F `  b ) ) ) )
3219, 23, 29, 31syl3anc 1218 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( F `  (
a ( .s `  S ) ( `' F `  b ) ) )  =  ( a ( .s `  T ) ( F `
 ( `' F `  b ) ) ) )
33 f1ocnvfv2 5987 . . . . . . 7  |-  ( ( F : X -1-1-onto-> Y  /\  b  e.  Y )  ->  ( F `  ( `' F `  b ) )  =  b )
3433ad2ant2l 745 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( F `  ( `' F `  b ) )  =  b )
3534oveq2d 6110 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( a ( .s
`  T ) ( F `  ( `' F `  b ) ) )  =  ( a ( .s `  T ) b ) )
3632, 35eqtrd 2475 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( F `  (
a ( .s `  S ) ( `' F `  b ) ) )  =  ( a ( .s `  T ) b ) )
37 simplr 754 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  ->  F : X -1-1-onto-> Y )
3810adantr 465 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  ->  S  e.  LMod )
3915, 5, 3, 30lmodvscl 16968 . . . . . 6  |-  ( ( S  e.  LMod  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  ( `' F `  b )  e.  X )  -> 
( a ( .s
`  S ) ( `' F `  b ) )  e.  X )
4038, 23, 29, 39syl3anc 1218 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( a ( .s
`  S ) ( `' F `  b ) )  e.  X )
41 f1ocnvfv 5988 . . . . 5  |-  ( ( F : X -1-1-onto-> Y  /\  ( a ( .s
`  S ) ( `' F `  b ) )  e.  X )  ->  ( ( F `
 ( a ( .s `  S ) ( `' F `  b ) ) )  =  ( a ( .s `  T ) b )  ->  ( `' F `  ( a ( .s `  T
) b ) )  =  ( a ( .s `  S ) ( `' F `  b ) ) ) )
4237, 40, 41syl2anc 661 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( ( F `  ( a ( .s
`  S ) ( `' F `  b ) ) )  =  ( a ( .s `  T ) b )  ->  ( `' F `  ( a ( .s
`  T ) b ) )  =  ( a ( .s `  S ) ( `' F `  b ) ) ) )
4336, 42mpd 15 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
a  e.  ( Base `  (Scalar `  T )
)  /\  b  e.  Y ) )  -> 
( `' F `  ( a ( .s
`  T ) b ) )  =  ( a ( .s `  S ) ( `' F `  b ) ) )
441, 2, 3, 4, 5, 6, 8, 10, 13, 18, 43islmhmd 17123 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : X -1-1-onto-> Y )  ->  `' F  e.  ( T LMHom  S ) )
4515, 1lmhmf 17118 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F : X
--> Y )
46 ffn 5562 . . . . 5  |-  ( F : X --> Y  ->  F  Fn  X )
4745, 46syl 16 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  F  Fn  X )
4847adantr 465 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  `' F  e.  ( T LMHom  S ) )  ->  F  Fn  X )
491, 15lmhmf 17118 . . . . 5  |-  ( `' F  e.  ( T LMHom 
S )  ->  `' F : Y --> X )
5049adantl 466 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  `' F  e.  ( T LMHom  S ) )  ->  `' F : Y --> X )
51 ffn 5562 . . . 4  |-  ( `' F : Y --> X  ->  `' F  Fn  Y
)
5250, 51syl 16 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  `' F  e.  ( T LMHom  S ) )  ->  `' F  Fn  Y )
53 dff1o4 5652 . . 3  |-  ( F : X -1-1-onto-> Y  <->  ( F  Fn  X  /\  `' F  Fn  Y ) )
5448, 52, 53sylanbrc 664 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  `' F  e.  ( T LMHom  S ) )  ->  F : X -1-1-onto-> Y )
5544, 54impbida 828 1  |-  ( F  e.  ( S LMHom  T
)  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T LMHom  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   `'ccnv 4842    Fn wfn 5416   -->wf 5417   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6094   Basecbs 14177  Scalarcsca 14244   .scvsca 14245    GrpHom cghm 15747   LModclmod 16951   LMHom clmhm 17103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-mnd 15418  df-grp 15548  df-ghm 15748  df-lmod 16953  df-lmhm 17106
This theorem is referenced by:  islmim2  17150
  Copyright terms: Public domain W3C validator