Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lgs0 | Structured version Visualization version GIF version |
Description: The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgs0 | ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11265 | . . 3 ⊢ 0 ∈ ℤ | |
2 | eqid 2610 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)) | |
3 | 2 | lgsval 24826 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0))))) |
4 | 1, 3 | mpan2 703 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0))))) |
5 | eqid 2610 | . . 3 ⊢ 0 = 0 | |
6 | 5 | iftruei 4043 | . 2 ⊢ if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))) = if((𝐴↑2) = 1, 1, 0) |
7 | 4, 6 | syl6eq 2660 | 1 ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ifcif 4036 {cpr 4127 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 < clt 9953 − cmin 10145 -cneg 10146 / cdiv 10563 ℕcn 10897 2c2 10947 7c7 10952 8c8 10953 ℤcz 11254 mod cmo 12530 seqcseq 12663 ↑cexp 12722 abscabs 13822 ∥ cdvds 14821 ℙcprime 15223 pCnt cpc 15379 /L clgs 24819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-i2m1 9883 ax-1ne0 9884 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-seq 12664 df-lgs 24820 |
This theorem is referenced by: lgsdir 24857 lgsne0 24860 lgsdinn0 24870 |
Copyright terms: Public domain | W3C validator |