MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgs0 Structured version   Visualization version   GIF version

Theorem lgs0 24835
Description: The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgs0 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))

Proof of Theorem lgs0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 11265 . . 3 0 ∈ ℤ
2 eqid 2610 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1))
32lgsval 24826 . . 3 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))))
41, 3mpan2 703 . 2 (𝐴 ∈ ℤ → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))))
5 eqid 2610 . . 3 0 = 0
65iftruei 4043 . 2 if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))) = if((𝐴↑2) = 1, 1, 0)
74, 6syl6eq 2660 1 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  ifcif 4036  {cpr 4127   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  7c7 10952  8c8 10953  cz 11254   mod cmo 12530  seqcseq 12663  cexp 12722  abscabs 13822  cdvds 14821  cprime 15223   pCnt cpc 15379   /L clgs 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-seq 12664  df-lgs 24820
This theorem is referenced by:  lgsdir  24857  lgsne0  24860  lgsdinn0  24870
  Copyright terms: Public domain W3C validator