Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd0l Structured version   Visualization version   GIF version

Theorem lfladd0l 33379
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfladd0l.v 𝑉 = (Base‘𝑊)
lfladd0l.r 𝑅 = (Scalar‘𝑊)
lfladd0l.p + = (+g𝑅)
lfladd0l.o 0 = (0g𝑅)
lfladd0l.f 𝐹 = (LFnl‘𝑊)
lfladd0l.w (𝜑𝑊 ∈ LMod)
lfladd0l.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfladd0l (𝜑 → ((𝑉 × { 0 }) ∘𝑓 + 𝐺) = 𝐺)

Proof of Theorem lfladd0l
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfladd0l.v . . . 4 𝑉 = (Base‘𝑊)
2 fvex 6113 . . . 4 (Base‘𝑊) ∈ V
31, 2eqeltri 2684 . . 3 𝑉 ∈ V
43a1i 11 . 2 (𝜑𝑉 ∈ V)
5 lfladd0l.w . . 3 (𝜑𝑊 ∈ LMod)
6 lfladd0l.g . . 3 (𝜑𝐺𝐹)
7 lfladd0l.r . . . 4 𝑅 = (Scalar‘𝑊)
8 eqid 2610 . . . 4 (Base‘𝑅) = (Base‘𝑅)
9 lfladd0l.f . . . 4 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 33368 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
115, 6, 10syl2anc 691 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
12 lfladd0l.o . . . 4 0 = (0g𝑅)
13 fvex 6113 . . . 4 (0g𝑅) ∈ V
1412, 13eqeltri 2684 . . 3 0 ∈ V
1514a1i 11 . 2 (𝜑0 ∈ V)
167lmodring 18694 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
17 ringgrp 18375 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
185, 16, 173syl 18 . . 3 (𝜑𝑅 ∈ Grp)
19 lfladd0l.p . . . 4 + = (+g𝑅)
208, 19, 12grplid 17275 . . 3 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
2118, 20sylan 487 . 2 ((𝜑𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
224, 11, 15, 21caofid0l 6823 1 (𝜑 → ((𝑉 × { 0 }) ∘𝑓 + 𝐺) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771  0gc0g 15923  Grpcgrp 17245  Ringcrg 18370  LModclmod 18686  LFnlclfn 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ring 18372  df-lmod 18688  df-lfl 33363
This theorem is referenced by:  ldualgrplem  33450  ldual0v  33455
  Copyright terms: Public domain W3C validator