MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv12a Structured version   Visualization version   GIF version

Theorem lediv12a 10795
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv12a
StepHypRef Expression
1 simplr 788 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ∈ ℝ)
2 0re 9919 . . . . . . . 8 0 ∈ ℝ
3 ltletr 10008 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 < 𝐶𝐶𝐷) → 0 < 𝐷))
42, 3mp3an1 1403 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 < 𝐶𝐶𝐷) → 0 < 𝐷))
54imp 444 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 < 𝐷)
65gt0ne0d 10471 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ≠ 0)
71, 6rereccld 10731 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐷) ∈ ℝ)
8 gt0ne0 10372 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
9 rereccl 10622 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℝ)
108, 9syldan 486 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (1 / 𝐶) ∈ ℝ)
1110ad2ant2r 779 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐶) ∈ ℝ)
12 recgt0 10746 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (1 / 𝐷))
131, 5, 12syl2anc 691 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 < (1 / 𝐷))
14 ltle 10005 . . . . . . 7 ((0 ∈ ℝ ∧ (1 / 𝐷) ∈ ℝ) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷)))
152, 7, 14sylancr 694 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷)))
1613, 15mpd 15 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 ≤ (1 / 𝐷))
17 simprr 792 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐶𝐷)
18 id 22 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
1918ad2ant2r 779 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
20 lerec 10785 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶)))
2119, 1, 5, 20syl12anc 1316 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (𝐶𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶)))
2217, 21mpbid 221 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐷) ≤ (1 / 𝐶))
2316, 22jca 553 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))
247, 11, 23jca31 555 . . 3 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶))))
25 simplll 794 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ∈ ℝ)
26 simplrl 796 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ 𝐴)
27 simpllr 795 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐵 ∈ ℝ)
2825, 26, 27jca31 555 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
29 simprll 798 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ∈ ℝ)
30 simprrl 800 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ (1 / 𝐷))
3129, 30jca 553 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)))
32 simprlr 799 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐶) ∈ ℝ)
3328, 31, 32jca32 556 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)))
34 simplrr 797 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴𝐵)
35 simprrr 801 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ≤ (1 / 𝐶))
3634, 35jca 553 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)))
37 lemul12a 10760 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)) → ((𝐴𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))))
3833, 36, 37sylc 63 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))
3924, 38sylan2 490 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))
40 recn 9905 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4140adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐴 ∈ ℂ)
42 recn 9905 . . . . . . 7 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
4342ad2antlr 759 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ∈ ℂ)
4443adantl 481 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐷 ∈ ℂ)
456adantl 481 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐷 ≠ 0)
4641, 44, 45divrecd 10683 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
4746adantlr 747 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
4847adantlr 747 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
49 recn 9905 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5049adantr 480 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
51 recn 9905 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
5251ad2antrl 760 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
538adantl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
5450, 52, 53divrecd 10683 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5554adantrrr 757 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5655adantrlr 755 . . . 4 ((𝐵 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5756adantll 746 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5857adantlr 747 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5939, 48, 583brtr4d 4615 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by:  lediv2a  10796  lediv12ad  11807  stoweidlem1  38894
  Copyright terms: Public domain W3C validator