Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version |
Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 8513 | . . 3 ⊢ 𝑅1 Fn On | |
2 | fniunfv 6409 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
4 | fndm 5904 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
6 | 5 | imaeq2i 5383 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
7 | imadmrn 5395 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
8 | 6, 7 | eqtr3i 2634 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
9 | 8 | unieqi 4381 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
10 | unir1 8559 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
11 | 3, 9, 10 | 3eqtr2i 2638 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 Vcvv 3173 ∪ cuni 4372 ∪ ciun 4455 dom cdm 5038 ran crn 5039 “ cima 5041 Oncon0 5640 Fn wfn 5799 ‘cfv 5804 𝑅1cr1 8508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-reg 8380 ax-inf2 8421 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |