Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq5i | Structured version Visualization version GIF version |
Description: Half of infeq5 8417. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5i | ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 4735 | . 2 ⊢ (ω ∈ V → (ω ∖ {∅}) ∈ V) | |
2 | 0ex 4718 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | snid 4155 | . . . 4 ⊢ ∅ ∈ {∅} |
4 | disj4 3977 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω) | |
5 | disj3 3973 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅})) | |
6 | 4, 5 | bitr3i 265 | . . . . 5 ⊢ (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅})) |
7 | peano1 6977 | . . . . . . 7 ⊢ ∅ ∈ ω | |
8 | eleq2 2677 | . . . . . . 7 ⊢ (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅}))) | |
9 | 7, 8 | mpbii 222 | . . . . . 6 ⊢ (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅})) |
10 | 9 | eldifbd 3553 | . . . . 5 ⊢ (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅}) |
11 | 6, 10 | sylbi 206 | . . . 4 ⊢ (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅}) |
12 | 3, 11 | mt4 114 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
13 | unidif0 4764 | . . . . 5 ⊢ ∪ (ω ∖ {∅}) = ∪ ω | |
14 | limom 6972 | . . . . . 6 ⊢ Lim ω | |
15 | limuni 5702 | . . . . . 6 ⊢ (Lim ω → ω = ∪ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ ω = ∪ ω |
17 | 13, 16 | eqtr4i 2635 | . . . 4 ⊢ ∪ (ω ∖ {∅}) = ω |
18 | 17 | psseq2i 3659 | . . 3 ⊢ ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω) |
19 | 12, 18 | mpbir 220 | . 2 ⊢ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) |
20 | psseq1 3656 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ 𝑥)) | |
21 | unieq 4380 | . . . . 5 ⊢ (𝑥 = (ω ∖ {∅}) → ∪ 𝑥 = ∪ (ω ∖ {∅})) | |
22 | 21 | psseq2d 3662 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
23 | 20, 22 | bitrd 267 | . . 3 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
24 | 23 | spcegv 3267 | . 2 ⊢ ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) → ∃𝑥 𝑥 ⊊ ∪ 𝑥)) |
25 | 1, 19, 24 | mpisyl 21 | 1 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1475 ∃wex 1695 ∈ wcel 1977 Vcvv 3173 ∖ cdif 3537 ∩ cin 3539 ⊊ wpss 3541 ∅c0 3874 {csn 4125 ∪ cuni 4372 Lim wlim 5641 ωcom 6957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-om 6958 |
This theorem is referenced by: infeq5 8417 inf5 8425 |
Copyright terms: Public domain | W3C validator |