Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubfval | Structured version Visualization version GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubfval | ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
2 | fveq2 6103 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
3 | grpsubval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | syl6eqr 2662 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | fveq2 6103 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
6 | grpsubval.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | syl6eqr 2662 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | eqidd 2611 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
9 | fveq2 6103 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
10 | grpsubval.i | . . . . . . . 8 ⊢ 𝐼 = (invg‘𝐺) | |
11 | 9, 10 | syl6eqr 2662 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
12 | 11 | fveq1d 6105 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
13 | 7, 8, 12 | oveq123d 6570 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
14 | 4, 4, 13 | mpt2eq123dv 6615 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
15 | df-sbg 17250 | . . . 4 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
16 | fvex 6113 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
17 | 3, 16 | eqeltri 2684 | . . . . 5 ⊢ 𝐵 ∈ V |
18 | 17, 17 | mpt2ex 7136 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V |
19 | 14, 15, 18 | fvmpt 6191 | . . 3 ⊢ (𝐺 ∈ V → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
20 | 1, 19 | syl5eq 2656 | . 2 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
21 | fvprc 6097 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
22 | 1, 21 | syl5eq 2656 | . . 3 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
23 | fvprc 6097 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
24 | 3, 23 | syl5eq 2656 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
25 | mpt2eq12 6613 | . . . . 5 ⊢ ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + (𝐼‘𝑦)))) | |
26 | 24, 24, 25 | syl2anc 691 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + (𝐼‘𝑦)))) |
27 | mpt20 6623 | . . . 4 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + (𝐼‘𝑦))) = ∅ | |
28 | 26, 27 | syl6eq 2660 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = ∅) |
29 | 22, 28 | eqtr4d 2647 | . 2 ⊢ (¬ 𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
30 | 20, 29 | pm2.61i 175 | 1 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∅c0 3874 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 Basecbs 15695 +gcplusg 15768 invgcminusg 17246 -gcsg 17247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-sbg 17250 |
This theorem is referenced by: grpsubval 17288 grpsubf 17317 grpsubpropd 17343 grpsubpropd2 17344 tgpsubcn 21704 tngtopn 22264 |
Copyright terms: Public domain | W3C validator |