Step | Hyp | Ref
| Expression |
1 | | simp1 1054 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑) |
2 | | simp2 1055 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺)) |
3 | | grpsubpropd2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
4 | 3 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺)) |
5 | 2, 4 | eleqtrrd 2691 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ 𝐵) |
6 | | grpsubpropd2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | 6 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp) |
8 | | simp3 1056 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺)) |
9 | | eqid 2610 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
10 | | eqid 2610 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
11 | 9, 10 | grpinvcl 17290 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) |
12 | 7, 8, 11 | syl2anc 691 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) |
13 | 12, 4 | eleqtrrd 2691 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ 𝐵) |
14 | | grpsubpropd2.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
15 | 14 | oveqrspc2v 6572 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) |
16 | 1, 5, 13, 15 | syl12anc 1316 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) |
17 | | grpsubpropd2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Base‘𝐻)) |
18 | 3, 17, 14 | grpinvpropd 17313 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘𝐺) =
(invg‘𝐻)) |
19 | 18 | fveq1d 6105 |
. . . . . . 7
⊢ (𝜑 →
((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
20 | 19 | oveq2d 6565 |
. . . . . 6
⊢ (𝜑 → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
21 | 20 | 3ad2ant1 1075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
22 | 16, 21 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
23 | 22 | mpt2eq3dva 6617 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
24 | 3, 17 | eqtr3d 2646 |
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
25 | | mpt2eq12 6613 |
. . . 4
⊢
(((Base‘𝐺) =
(Base‘𝐻) ∧
(Base‘𝐺) =
(Base‘𝐻)) →
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
26 | 24, 24, 25 | syl2anc 691 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
27 | 23, 26 | eqtrd 2644 |
. 2
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
28 | | eqid 2610 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
29 | | eqid 2610 |
. . 3
⊢
(-g‘𝐺) = (-g‘𝐺) |
30 | 9, 28, 10, 29 | grpsubfval 17287 |
. 2
⊢
(-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) |
31 | | eqid 2610 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
32 | | eqid 2610 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
33 | | eqid 2610 |
. . 3
⊢
(invg‘𝐻) = (invg‘𝐻) |
34 | | eqid 2610 |
. . 3
⊢
(-g‘𝐻) = (-g‘𝐻) |
35 | 31, 32, 33, 34 | grpsubfval 17287 |
. 2
⊢
(-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
36 | 27, 30, 35 | 3eqtr4g 2669 |
1
⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |