MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gass Structured version   Visualization version   GIF version

Theorem gass 17557
Description: A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gass.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gass (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝑥,𝑍,𝑦

Proof of Theorem gass
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 6698 . . . . 5 ((𝑥𝑋𝑦𝑍) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) = (𝑥 𝑦))
21adantl 481 . . . 4 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) = (𝑥 𝑦))
3 gass.1 . . . . . . 7 𝑋 = (Base‘𝐺)
43gaf 17551 . . . . . 6 (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
54adantl 481 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
65fovrnda 6703 . . . 4 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)
72, 6eqeltrrd 2689 . . 3 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥 𝑦) ∈ 𝑍)
87ralrimivva 2954 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
9 gagrp 17548 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 758 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝐺 ∈ Grp)
11 gaset 17549 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
1211adantr 480 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑌 ∈ V)
13 simpr 476 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑍𝑌)
1412, 13ssexd 4733 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑍 ∈ V)
1514adantr 480 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝑍 ∈ V)
1610, 15jca 553 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝐺 ∈ Grp ∧ 𝑍 ∈ V))
173gaf 17551 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
1817ad2antrr 758 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → :(𝑋 × 𝑌)⟶𝑌)
19 ffn 5958 . . . . . . 7 ( :(𝑋 × 𝑌)⟶𝑌 Fn (𝑋 × 𝑌))
2018, 19syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → Fn (𝑋 × 𝑌))
21 simplr 788 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝑍𝑌)
22 xpss2 5152 . . . . . . 7 (𝑍𝑌 → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌))
2321, 22syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌))
24 fnssres 5918 . . . . . 6 (( Fn (𝑋 × 𝑌) ∧ (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) → ( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍))
2520, 23, 24syl2anc 691 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍))
26 simpr 476 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
271eleq1d 2672 . . . . . . . 8 ((𝑥𝑋𝑦𝑍) → ((𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ (𝑥 𝑦) ∈ 𝑍))
2827ralbidva 2968 . . . . . . 7 (𝑥𝑋 → (∀𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
2928ralbiia 2962 . . . . . 6 (∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
3026, 29sylibr 223 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)
31 ffnov 6662 . . . . 5 (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ↔ (( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍))
3225, 30, 31sylanbrc 695 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
33 eqid 2610 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
343, 33grpidcl 17273 . . . . . . . . 9 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
3510, 34syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (0g𝐺) ∈ 𝑋)
36 ovres 6698 . . . . . . . 8 (((0g𝐺) ∈ 𝑋𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = ((0g𝐺) 𝑧))
3735, 36sylan 487 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = ((0g𝐺) 𝑧))
3821sselda 3568 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → 𝑧𝑌)
39 simpll 786 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∈ (𝐺 GrpAct 𝑌))
4033gagrpid 17550 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4139, 40sylan 487 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4238, 41syldan 486 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺) 𝑧) = 𝑧)
4337, 42eqtrd 2644 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧)
4439ad2antrr 758 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ∈ (𝐺 GrpAct 𝑌))
45 simprl 790 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
46 simprr 792 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4738adantr 480 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
48 eqid 2610 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
493, 48gaass 17553 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢𝑋𝑣𝑋𝑧𝑌)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
5044, 45, 46, 47, 49syl13anc 1320 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
51 simplr 788 . . . . . . . . . . 11 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑍)
52 simpllr 795 . . . . . . . . . . 11 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
53 ovrspc2v 6571 . . . . . . . . . . 11 (((𝑣𝑋𝑧𝑍) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝑣 𝑧) ∈ 𝑍)
5446, 51, 52, 53syl21anc 1317 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) ∈ 𝑍)
55 ovres 6698 . . . . . . . . . 10 ((𝑢𝑋 ∧ (𝑣 𝑧) ∈ 𝑍) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)) = (𝑢 (𝑣 𝑧)))
5645, 54, 55syl2anc 691 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)) = (𝑢 (𝑣 𝑧)))
5750, 56eqtr4d 2647 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)))
5810ad2antrr 758 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
593, 48grpcl 17253 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
6058, 45, 46, 59syl3anc 1318 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
61 ovres 6698 . . . . . . . . 9 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑍) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g𝐺)𝑣) 𝑧))
6260, 51, 61syl2anc 691 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g𝐺)𝑣) 𝑧))
63 ovres 6698 . . . . . . . . . 10 ((𝑣𝑋𝑧𝑍) → (𝑣( ↾ (𝑋 × 𝑍))𝑧) = (𝑣 𝑧))
6446, 51, 63syl2anc 691 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣( ↾ (𝑋 × 𝑍))𝑧) = (𝑣 𝑧))
6564oveq2d 6565 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)))
6657, 62, 653eqtr4d 2654 . . . . . . 7 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))
6766ralrimivva 2954 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))
6843, 67jca 553 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))
6968ralrimiva 2949 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))
7032, 69jca 553 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))))
713, 48, 33isga 17547 . . 3 (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ((𝐺 ∈ Grp ∧ 𝑍 ∈ V) ∧ (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))))
7216, 70, 71sylanbrc 695 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍))
738, 72impbida 873 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   × cxp 5036  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245   GrpAct cga 17545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ga 17546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator