Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifval Structured version   Visualization version   GIF version

Theorem fwddifval 31439
Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
Hypotheses
Ref Expression
fwddifval.1 (𝜑𝐴 ⊆ ℂ)
fwddifval.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifval.3 (𝜑𝑋𝐴)
fwddifval.4 (𝜑 → (𝑋 + 1) ∈ 𝐴)
Assertion
Ref Expression
fwddifval (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))

Proof of Theorem fwddifval
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddif 31436 . . . . 5 △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
21a1i 11 . . . 4 (𝜑 → △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)))))
3 dmeq 5246 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43eleq2d 2673 . . . . . . 7 (𝑓 = 𝐹 → ((𝑦 + 1) ∈ dom 𝑓 ↔ (𝑦 + 1) ∈ dom 𝐹))
53, 4rabeqbidv 3168 . . . . . 6 (𝑓 = 𝐹 → {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} = {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹})
6 fveq1 6102 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 1)) = (𝐹‘(𝑥 + 1)))
7 fveq1 6102 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
86, 7oveq12d 6567 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)) = ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)))
95, 8mpteq12dv 4663 . . . . 5 (𝑓 = 𝐹 → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
109adantl 481 . . . 4 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
11 fwddifval.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
12 fwddifval.1 . . . . 5 (𝜑𝐴 ⊆ ℂ)
13 cnex 9896 . . . . . 6 ℂ ∈ V
14 elpm2r 7761 . . . . . 6 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
1513, 13, 14mpanl12 714 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
1611, 12, 15syl2anc 691 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
17 fdm 5964 . . . . . . 7 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
1811, 17syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1913a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
2019, 12ssexd 4733 . . . . . 6 (𝜑𝐴 ∈ V)
2118, 20eqeltrd 2688 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
22 rabexg 4739 . . . . 5 (dom 𝐹 ∈ V → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V)
23 mptexg 6389 . . . . 5 ({𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
252, 10, 16, 24fvmptd 6197 . . 3 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2618eleq2d 2673 . . . . 5 (𝜑 → ((𝑦 + 1) ∈ dom 𝐹 ↔ (𝑦 + 1) ∈ 𝐴))
2718, 26rabeqbidv 3168 . . . 4 (𝜑 → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} = {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
2827mpteq1d 4666 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2925, 28eqtrd 2644 . 2 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
30 oveq1 6556 . . . . 5 (𝑥 = 𝑋 → (𝑥 + 1) = (𝑋 + 1))
3130fveq2d 6107 . . . 4 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑋 + 1)))
32 fveq2 6103 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
3331, 32oveq12d 6567 . . 3 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
3433adantl 481 . 2 ((𝜑𝑥 = 𝑋) → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
35 fwddifval.3 . . 3 (𝜑𝑋𝐴)
36 fwddifval.4 . . 3 (𝜑 → (𝑋 + 1) ∈ 𝐴)
37 oveq1 6556 . . . . 5 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3837eleq1d 2672 . . . 4 (𝑦 = 𝑋 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑋 + 1) ∈ 𝐴))
3938elrab 3331 . . 3 (𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↔ (𝑋𝐴 ∧ (𝑋 + 1) ∈ 𝐴))
4035, 36, 39sylanbrc 695 . 2 (𝜑𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
41 ovex 6577 . . 3 ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)) ∈ V
4241a1i 11 . 2 (𝜑 → ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)) ∈ V)
4329, 34, 40, 42fvmptd 6197 1 (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813  1c1 9816   + caddc 9818  cmin 10145  cfwddif 31435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-fwddif 31436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator