MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssres Structured version   Visualization version   GIF version

Theorem funssres 5844
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)

Proof of Theorem funssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3562 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2 vex 3176 . . . . . . . . 9 𝑥 ∈ V
3 vex 3176 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 5250 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
54a1i 11 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺))
61, 5jcad 554 . . . . . 6 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
76adantl 481 . . . . 5 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
8 funeu2 5829 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹)
92eldm2 5244 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐺)
101ancrd 575 . . . . . . . . . . . . . . 15 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1110eximdv 1833 . . . . . . . . . . . . . 14 (𝐺𝐹 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
129, 11syl5bi 231 . . . . . . . . . . . . 13 (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1312imp 444 . . . . . . . . . . . 12 ((𝐺𝐹𝑥 ∈ dom 𝐺) → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
14 eupick 2524 . . . . . . . . . . . 12 ((∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹 ∧ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
158, 13, 14syl2an 493 . . . . . . . . . . 11 (((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺𝐹𝑥 ∈ dom 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
1615exp43 638 . . . . . . . . . 10 (Fun 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1716com23 84 . . . . . . . . 9 (Fun 𝐹 → (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1817imp 444 . . . . . . . 8 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
1918com34 89 . . . . . . 7 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2019pm2.43d 51 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
2120impd 446 . . . . 5 ((Fun 𝐹𝐺𝐹) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺) → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
227, 21impbid 201 . . . 4 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
233opelres 5322 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺))
2422, 23syl6rbbr 278 . . 3 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2524alrimivv 1843 . 2 ((Fun 𝐹𝐺𝐹) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
26 relres 5346 . . 3 Rel (𝐹 ↾ dom 𝐺)
27 funrel 5821 . . . 4 (Fun 𝐹 → Rel 𝐹)
28 relss 5129 . . . 4 (𝐺𝐹 → (Rel 𝐹 → Rel 𝐺))
2927, 28mpan9 485 . . 3 ((Fun 𝐹𝐺𝐹) → Rel 𝐺)
30 eqrel 5132 . . 3 ((Rel (𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3126, 29, 30sylancr 694 . 2 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3225, 31mpbird 246 1 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  wss 3540  cop 4131  dom cdm 5038  cres 5040  Rel wrel 5043  Fun wfun 5798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-fun 5806
This theorem is referenced by:  fun2ssres  5845  funcnvres  5881  funssfv  6119  oprssov  6701  isngp2  22211  dvres3  23483  dvres3a  23484  dchrelbas2  24762  funpsstri  30909  funsseq  30912  f1ssf1  40328  issubgr2  40496  uhgrissubgr  40499
  Copyright terms: Public domain W3C validator