Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issubgr2 Structured version   Visualization version   GIF version

Theorem issubgr2 40496
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr2
StepHypRef Expression
1 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
2 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
3 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
4 issubgr.b . . . 4 𝐵 = (iEdg‘𝐺)
5 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
61, 2, 3, 4, 5issubgr 40495 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
763adant2 1073 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
8 resss 5342 . . . . 5 (𝐵 ↾ dom 𝐼) ⊆ 𝐵
9 sseq1 3589 . . . . 5 (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵))
108, 9mpbiri 247 . . . 4 (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼𝐵)
11 funssres 5844 . . . . . . 7 ((Fun 𝐵𝐼𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼)
1211eqcomd 2616 . . . . . 6 ((Fun 𝐵𝐼𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼))
1312ex 449 . . . . 5 (Fun 𝐵 → (𝐼𝐵𝐼 = (𝐵 ↾ dom 𝐼)))
14133ad2ant2 1076 . . . 4 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝐼𝐵𝐼 = (𝐵 ↾ dom 𝐼)))
1510, 14impbid2 215 . . 3 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼𝐵))
16153anbi2d 1396 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))
177, 16bitrd 267 1 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  cres 5040  Fun wfun 5798  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   SubGraph csubgr 40491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-subgr 40492
This theorem is referenced by:  uhgrspansubgr  40515
  Copyright terms: Public domain W3C validator