Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issubgr2 | Structured version Visualization version GIF version |
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
issubgr2 | ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . . 4 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . . 4 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | issubgr 40495 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
7 | 6 | 3adant2 1073 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
8 | resss 5342 | . . . . 5 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
9 | sseq1 3589 | . . . . 5 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
10 | 8, 9 | mpbiri 247 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
11 | funssres 5844 | . . . . . . 7 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼) | |
12 | 11 | eqcomd 2616 | . . . . . 6 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼)) |
13 | 12 | ex 449 | . . . . 5 ⊢ (Fun 𝐵 → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
14 | 13 | 3ad2ant2 1076 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
15 | 10, 14 | impbid2 215 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼 ⊆ 𝐵)) |
16 | 15 | 3anbi2d 1396 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
17 | 7, 16 | bitrd 267 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 𝒫 cpw 4108 class class class wbr 4583 dom cdm 5038 ↾ cres 5040 Fun wfun 5798 ‘cfv 5804 Vtxcvtx 25673 iEdgciedg 25674 Edgcedga 25792 SubGraph csubgr 40491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-res 5050 df-iota 5768 df-fun 5806 df-fv 5812 df-subgr 40492 |
This theorem is referenced by: uhgrspansubgr 40515 |
Copyright terms: Public domain | W3C validator |