MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssres Structured version   Unicode version

Theorem funssres 5641
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )

Proof of Theorem funssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3464 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  <. x ,  y >.  e.  F
) )
2 vex 3090 . . . . . . . . 9  |-  x  e. 
_V
3 vex 3090 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 5058 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
54a1i 11 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  x  e. 
dom  G ) )
61, 5jcad 535 . . . . . 6  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
76adantl 467 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
8 funeu2 5626 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  <. x ,  y >.  e.  F
)  ->  E! y <. x ,  y >.  e.  F )
92eldm2 5053 . . . . . . . . . . . . . 14  |-  ( x  e.  dom  G  <->  E. y <. x ,  y >.  e.  G )
101ancrd 556 . . . . . . . . . . . . . . 15  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1110eximdv 1757 . . . . . . . . . . . . . 14  |-  ( G 
C_  F  ->  ( E. y <. x ,  y
>.  e.  G  ->  E. y
( <. x ,  y
>.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
129, 11syl5bi 220 . . . . . . . . . . . . 13  |-  ( G 
C_  F  ->  (
x  e.  dom  G  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1312imp 430 . . . . . . . . . . . 12  |-  ( ( G  C_  F  /\  x  e.  dom  G )  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )
14 eupick 2336 . . . . . . . . . . . 12  |-  ( ( E! y <. x ,  y >.  e.  F  /\  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  G
) )
158, 13, 14syl2an 479 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  <.
x ,  y >.  e.  F )  /\  ( G  C_  F  /\  x  e.  dom  G ) )  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) )
1615exp43 615 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( <. x ,  y >.  e.  F  ->  ( G  C_  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1716com23 81 . . . . . . . . 9  |-  ( Fun 
F  ->  ( G  C_  F  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1817imp 430 . . . . . . . 8  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  -> 
( <. x ,  y
>.  e.  F  ->  <. x ,  y >.  e.  G
) ) ) )
1918com34 86 . . . . . . 7  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( <.
x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) ) )
2019pm2.43d 50 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) )
2120impd 432 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( <. x ,  y
>.  e.  F  /\  x  e.  dom  G )  ->  <. x ,  y >.  e.  G ) )
227, 21impbid 193 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
233opelres 5130 . . . 4  |-  ( <.
x ,  y >.  e.  ( F  |`  dom  G
)  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) )
2422, 23syl6rbbr 267 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  ( F  |`  dom  G
)  <->  <. x ,  y
>.  e.  G ) )
2524alrimivv 1767 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) )
26 relres 5152 . . 3  |-  Rel  ( F  |`  dom  G )
27 funrel 5618 . . . 4  |-  ( Fun 
F  ->  Rel  F )
28 relss 4942 . . . 4  |-  ( G 
C_  F  ->  ( Rel  F  ->  Rel  G ) )
2927, 28mpan9 471 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  Rel  G )
30 eqrel 4944 . . 3  |-  ( ( Rel  ( F  |`  dom  G )  /\  Rel  G )  ->  ( ( F  |`  dom  G )  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3126, 29, 30sylancr 667 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3225, 31mpbird 235 1  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1659    e. wcel 1870   E!weu 2266    C_ wss 3442   <.cop 4008   dom cdm 4854    |` cres 4856   Rel wrel 4859   Fun wfun 5595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-res 4866  df-fun 5603
This theorem is referenced by:  fun2ssres  5642  funcnvres  5670  funssfv  5896  oprssov  6452  isngp2  21533  dvres3  22736  dvres3a  22737  dchrelbas2  24019  funpsstri  30184  funsseq  30187
  Copyright terms: Public domain W3C validator