MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssres Structured version   Visualization version   Unicode version

Theorem funssres 5629
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )

Proof of Theorem funssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3412 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  <. x ,  y >.  e.  F
) )
2 vex 3034 . . . . . . . . 9  |-  x  e. 
_V
3 vex 3034 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 5044 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
54a1i 11 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  x  e. 
dom  G ) )
61, 5jcad 542 . . . . . 6  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
76adantl 473 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
8 funeu2 5614 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  <. x ,  y >.  e.  F
)  ->  E! y <. x ,  y >.  e.  F )
92eldm2 5038 . . . . . . . . . . . . . 14  |-  ( x  e.  dom  G  <->  E. y <. x ,  y >.  e.  G )
101ancrd 563 . . . . . . . . . . . . . . 15  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1110eximdv 1772 . . . . . . . . . . . . . 14  |-  ( G 
C_  F  ->  ( E. y <. x ,  y
>.  e.  G  ->  E. y
( <. x ,  y
>.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
129, 11syl5bi 225 . . . . . . . . . . . . 13  |-  ( G 
C_  F  ->  (
x  e.  dom  G  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1312imp 436 . . . . . . . . . . . 12  |-  ( ( G  C_  F  /\  x  e.  dom  G )  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )
14 eupick 2385 . . . . . . . . . . . 12  |-  ( ( E! y <. x ,  y >.  e.  F  /\  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  G
) )
158, 13, 14syl2an 485 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  <.
x ,  y >.  e.  F )  /\  ( G  C_  F  /\  x  e.  dom  G ) )  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) )
1615exp43 623 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( <. x ,  y >.  e.  F  ->  ( G  C_  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1716com23 80 . . . . . . . . 9  |-  ( Fun 
F  ->  ( G  C_  F  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1817imp 436 . . . . . . . 8  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  -> 
( <. x ,  y
>.  e.  F  ->  <. x ,  y >.  e.  G
) ) ) )
1918com34 85 . . . . . . 7  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( <.
x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) ) )
2019pm2.43d 49 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) )
2120impd 438 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( <. x ,  y
>.  e.  F  /\  x  e.  dom  G )  ->  <. x ,  y >.  e.  G ) )
227, 21impbid 195 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
233opelres 5116 . . . 4  |-  ( <.
x ,  y >.  e.  ( F  |`  dom  G
)  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) )
2422, 23syl6rbbr 272 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  ( F  |`  dom  G
)  <->  <. x ,  y
>.  e.  G ) )
2524alrimivv 1782 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) )
26 relres 5138 . . 3  |-  Rel  ( F  |`  dom  G )
27 funrel 5606 . . . 4  |-  ( Fun 
F  ->  Rel  F )
28 relss 4927 . . . 4  |-  ( G 
C_  F  ->  ( Rel  F  ->  Rel  G ) )
2927, 28mpan9 477 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  Rel  G )
30 eqrel 4929 . . 3  |-  ( ( Rel  ( F  |`  dom  G )  /\  Rel  G )  ->  ( ( F  |`  dom  G )  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3126, 29, 30sylancr 676 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3225, 31mpbird 240 1  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452   E.wex 1671    e. wcel 1904   E!weu 2319    C_ wss 3390   <.cop 3965   dom cdm 4839    |` cres 4841   Rel wrel 4844   Fun wfun 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-res 4851  df-fun 5591
This theorem is referenced by:  fun2ssres  5630  funcnvres  5662  funssfv  5894  oprssov  6457  isngp2  21689  dvres3  22947  dvres3a  22948  dchrelbas2  24244  funpsstri  30477  funsseq  30480  f1ssf1  39167  issubgr2  39508  uhgrissubgr  39511
  Copyright terms: Public domain W3C validator