MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssres Structured version   Unicode version

Theorem funssres 5479
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )

Proof of Theorem funssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3371 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  <. x ,  y >.  e.  F
) )
2 vex 2996 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2996 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 5064 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
54a1i 11 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  x  e. 
dom  G ) )
61, 5jcad 533 . . . . . 6  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
76adantl 466 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
8 funeu2 5464 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  <. x ,  y >.  e.  F
)  ->  E! y <. x ,  y >.  e.  F )
92eldm2 5059 . . . . . . . . . . . . . 14  |-  ( x  e.  dom  G  <->  E. y <. x ,  y >.  e.  G )
101ancrd 554 . . . . . . . . . . . . . . 15  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1110eximdv 1676 . . . . . . . . . . . . . 14  |-  ( G 
C_  F  ->  ( E. y <. x ,  y
>.  e.  G  ->  E. y
( <. x ,  y
>.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
129, 11syl5bi 217 . . . . . . . . . . . . 13  |-  ( G 
C_  F  ->  (
x  e.  dom  G  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1312imp 429 . . . . . . . . . . . 12  |-  ( ( G  C_  F  /\  x  e.  dom  G )  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )
14 eupick 2342 . . . . . . . . . . . 12  |-  ( ( E! y <. x ,  y >.  e.  F  /\  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  G
) )
158, 13, 14syl2an 477 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  <.
x ,  y >.  e.  F )  /\  ( G  C_  F  /\  x  e.  dom  G ) )  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) )
1615exp43 612 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( <. x ,  y >.  e.  F  ->  ( G  C_  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1716com23 78 . . . . . . . . 9  |-  ( Fun 
F  ->  ( G  C_  F  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1817imp 429 . . . . . . . 8  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  -> 
( <. x ,  y
>.  e.  F  ->  <. x ,  y >.  e.  G
) ) ) )
1918com34 83 . . . . . . 7  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( <.
x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) ) )
2019pm2.43d 48 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) )
2120impd 431 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( <. x ,  y
>.  e.  F  /\  x  e.  dom  G )  ->  <. x ,  y >.  e.  G ) )
227, 21impbid 191 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
233opelres 5137 . . . 4  |-  ( <.
x ,  y >.  e.  ( F  |`  dom  G
)  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) )
2422, 23syl6rbbr 264 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  ( F  |`  dom  G
)  <->  <. x ,  y
>.  e.  G ) )
2524alrimivv 1686 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) )
26 relres 5159 . . 3  |-  Rel  ( F  |`  dom  G )
27 funrel 5456 . . . 4  |-  ( Fun 
F  ->  Rel  F )
28 relss 4948 . . . 4  |-  ( G 
C_  F  ->  ( Rel  F  ->  Rel  G ) )
2927, 28mpan9 469 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  Rel  G )
30 eqrel 4950 . . 3  |-  ( ( Rel  ( F  |`  dom  G )  /\  Rel  G )  ->  ( ( F  |`  dom  G )  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3126, 29, 30sylancr 663 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3225, 31mpbird 232 1  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   E!weu 2253    C_ wss 3349   <.cop 3904   dom cdm 4861    |` cres 4863   Rel wrel 4866   Fun wfun 5433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-br 4314  df-opab 4372  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-res 4873  df-fun 5441
This theorem is referenced by:  fun2ssres  5480  funcnvres  5508  funssfv  5726  oprssov  6253  isngp2  20211  dvres3  21410  dvres3a  21411  dchrelbas2  22598  funpsstri  27598  funsseq  27602
  Copyright terms: Public domain W3C validator