MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Structured version   Visualization version   GIF version

Theorem fnssresb 5917
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 5807 . 2 ((𝐹𝐵) Fn 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵))
2 fnfun 5902 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
3 funres 5843 . . . . 5 (Fun 𝐹 → Fun (𝐹𝐵))
42, 3syl 17 . . . 4 (𝐹 Fn 𝐴 → Fun (𝐹𝐵))
54biantrurd 528 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵)))
6 ssdmres 5340 . . . 4 (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹𝐵) = 𝐵)
7 fndm 5904 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
87sseq2d 3596 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
96, 8syl5bbr 273 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵𝐵𝐴))
105, 9bitr3d 269 . 2 (𝐹 Fn 𝐴 → ((Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵) ↔ 𝐵𝐴))
111, 10syl5bb 271 1 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wss 3540  dom cdm 5038  cres 5040  Fun wfun 5798   Fn wfn 5799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-fun 5806  df-fn 5807
This theorem is referenced by:  fnssres  5918  plyreres  23842  redwlklem  26135  xrge0pluscn  29314  icoreresf  32376  fnbrafvb  39883  wrdred1hash  40241  rhmsscrnghm  41818  rngcrescrhm  41877  rngcrescrhmALTV  41896
  Copyright terms: Public domain W3C validator