Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcrescrhm Structured version   Visualization version   GIF version

Theorem rngcrescrhm 41877
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rngcrescrhm (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rngcrescrhm
StepHypRef Expression
1 eqid 2610 . 2 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2 rngcrescrhm.c . . . 4 𝐶 = (RngCat‘𝑈)
3 fvex 6113 . . . 4 (RngCat‘𝑈) ∈ V
42, 3eqeltri 2684 . . 3 𝐶 ∈ V
54a1i 11 . 2 (𝜑𝐶 ∈ V)
6 rngcrescrhm.r . . . 4 (𝜑𝑅 = (Ring ∩ 𝑈))
7 incom 3767 . . . 4 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
86, 7syl6eq 2660 . . 3 (𝜑𝑅 = (𝑈 ∩ Ring))
9 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
10 inex1g 4729 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
119, 10syl 17 . . 3 (𝜑 → (𝑈 ∩ Ring) ∈ V)
128, 11eqeltrd 2688 . 2 (𝜑𝑅 ∈ V)
13 inss1 3795 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
146, 13syl6eqss 3618 . . . . 5 (𝜑𝑅 ⊆ Ring)
15 xpss12 5148 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
1614, 14, 15syl2anc 691 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
17 rhmfn 41708 . . . . 5 RingHom Fn (Ring × Ring)
18 fnssresb 5917 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1917, 18mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
2016, 19mpbird 246 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
21 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2221fneq1i 5899 . . 3 (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
2320, 22sylibr 223 . 2 (𝜑𝐻 Fn (𝑅 × 𝑅))
241, 5, 12, 23rescval2 16311 1 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  cop 4131   × cxp 5036  cres 5040   Fn wfn 5799  cfv 5804  (class class class)co 6549  ndxcnx 15692   sSet csts 15693  s cress 15696  Hom chom 15779  cat cresc 16291  Ringcrg 18370   RingHom crh 18535  RngCatcrngc 41749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-resc 16294  df-mhm 17158  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator