MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstg Structured version   Visualization version   GIF version

Theorem fconstg 6005
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})

Proof of Theorem fconstg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4135 . . . 4 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21xpeq2d 5063 . . 3 (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵}))
3 feq1 5939 . . . 4 ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥}))
4 feq3 5941 . . . 4 ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
53, 4sylan9bb 732 . . 3 (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
62, 1, 5syl2anc 691 . 2 (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
7 vex 3176 . . 3 𝑥 ∈ V
87fconst 6004 . 2 (𝐴 × {𝑥}):𝐴⟶{𝑥}
96, 8vtoclg 3239 1 (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  {csn 4125   × cxp 5036  wf 5800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808
This theorem is referenced by:  fnconstg  6006  fconst6g  6007  xpsng  6312  fvconst2g  6372  fconst2g  6373  xkoptsub  21267  mbfconstlem  23202  i1fmulclem  23275  i1fmulc  23276  itg2mulclem  23319  dvcmulf  23514  dvef  23547  coemulc  23815  resf1o  28893  locfinref  29236  ccatmulgnn0dir  29945
  Copyright terms: Public domain W3C validator