MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstg Structured version   Unicode version

Theorem fconstg 5772
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )

Proof of Theorem fconstg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 4037 . . . 4  |-  ( x  =  B  ->  { x }  =  { B } )
21xpeq2d 5023 . . 3  |-  ( x  =  B  ->  ( A  X.  { x }
)  =  ( A  X.  { B }
) )
3 feq1 5713 . . . 4  |-  ( ( A  X.  { x } )  =  ( A  X.  { B } )  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { x } ) )
4 feq3 5715 . . . 4  |-  ( { x }  =  { B }  ->  ( ( A  X.  { B } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
53, 4sylan9bb 699 . . 3  |-  ( ( ( A  X.  {
x } )  =  ( A  X.  { B } )  /\  {
x }  =  { B } )  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
62, 1, 5syl2anc 661 . 2  |-  ( x  =  B  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
7 vex 3116 . . 3  |-  x  e. 
_V
87fconst 5771 . 2  |-  ( A  X.  { x }
) : A --> { x }
96, 8vtoclg 3171 1  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767   {csn 4027    X. cxp 4997   -->wf 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-fun 5590  df-fn 5591  df-f 5592
This theorem is referenced by:  fnconstg  5773  fconst6g  5774  xpsng  6063  fvconst2g  6115  fconst2g  6116  xkoptsub  19982  mbfconstlem  21863  i1fmulclem  21936  i1fmulc  21937  itg2mulclem  21980  dvcmulf  22175  dvef  22208  coemulc  22478  resf1o  27322  ccatmulgnn0dir  28247
  Copyright terms: Public domain W3C validator