MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Visualization version   GIF version

Theorem evl1fval 19513
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1𝑜 eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑄   𝑥,𝑅
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem evl1fval
Dummy variables 𝑖 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3 𝑂 = (eval1𝑅)
2 fvex 6113 . . . . . 6 (Base‘𝑟) ∈ V
32a1i 11 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
4 id 22 . . . . . . . . 9 (𝑏 = (Base‘𝑟) → 𝑏 = (Base‘𝑟))
5 fveq2 6103 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
6 evl1fval.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
75, 6syl6eqr 2662 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
84, 7sylan9eqr 2666 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
98oveq1d 6564 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏𝑚 1𝑜) = (𝐵𝑚 1𝑜))
108, 9oveq12d 6567 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏𝑚 (𝑏𝑚 1𝑜)) = (𝐵𝑚 (𝐵𝑚 1𝑜)))
118mpteq1d 4666 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑦𝑏 ↦ (1𝑜 × {𝑦})) = (𝑦𝐵 ↦ (1𝑜 × {𝑦})))
1211coeq2d 5206 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
1310, 12mpteq12dv 4663 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))))
14 simpl 472 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑟 = 𝑅)
1514oveq2d 6565 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1𝑜 eval 𝑟) = (1𝑜 eval 𝑅))
16 evl1fval.q . . . . . . 7 𝑄 = (1𝑜 eval 𝑅)
1715, 16syl6eqr 2662 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1𝑜 eval 𝑟) = 𝑄)
1813, 17coeq12d 5208 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
193, 18csbied 3526 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
20 df-evl1 19502 . . . 4 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)))
21 ovex 6577 . . . . . 6 (𝐵𝑚 (𝐵𝑚 1𝑜)) ∈ V
2221mptex 6390 . . . . 5 (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∈ V
23 ovex 6577 . . . . . 6 (1𝑜 eval 𝑅) ∈ V
2416, 23eqeltri 2684 . . . . 5 𝑄 ∈ V
2522, 24coex 7011 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄) ∈ V
2619, 20, 25fvmpt 6191 . . 3 (𝑅 ∈ V → (eval1𝑅) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
271, 26syl5eq 2656 . 2 (𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
28 fvprc 6097 . . . . 5 𝑅 ∈ V → (eval1𝑅) = ∅)
291, 28syl5eq 2656 . . . 4 𝑅 ∈ V → 𝑂 = ∅)
30 co02 5566 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅) = ∅
3129, 30syl6eqr 2662 . . 3 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅))
32 df-evl 19328 . . . . . . 7 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
3332reldmmpt2 6669 . . . . . 6 Rel dom eval
3433ovprc2 6583 . . . . 5 𝑅 ∈ V → (1𝑜 eval 𝑅) = ∅)
3516, 34syl5eq 2656 . . . 4 𝑅 ∈ V → 𝑄 = ∅)
3635coeq2d 5206 . . 3 𝑅 ∈ V → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅))
3731, 36eqtr4d 2647 . 2 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
3827, 37pm2.61i 175 1 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  c0 3874  {csn 4125  cmpt 4643   × cxp 5036  ccom 5042  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  𝑚 cmap 7744  Basecbs 15695   evalSub ces 19325   eval cevl 19326  eval1ce1 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-evl 19328  df-evl1 19502
This theorem is referenced by:  evl1val  19514  evl1fval1lem  19515  evl1rhm  19517  pf1rcl  19534
  Copyright terms: Public domain W3C validator