MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm2 Structured version   Visualization version   GIF version

Theorem elfm2 21562
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfm 21561 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2 ssfg 21486 . . . . . . . . . 10 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
3 elfm2.l . . . . . . . . . 10 𝐿 = (𝑌filGen𝐵)
42, 3syl6sseqr 3615 . . . . . . . . 9 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
54sselda 3568 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝐿)
65adantrr 749 . . . . . . 7 ((𝐵 ∈ (fBas‘𝑌) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
763ad2antl2 1217 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
8 simprr 792 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝑦) ⊆ 𝐴)
9 imaeq2 5381 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
109sseq1d 3595 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐴 ↔ (𝐹𝑦) ⊆ 𝐴))
1110rspcev 3282 . . . . . 6 ((𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
127, 8, 11syl2anc 691 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
1312rexlimdvaa 3014 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
143eleq2i 2680 . . . . . . . 8 (𝑥𝐿𝑥 ∈ (𝑌filGen𝐵))
15 elfg 21485 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → (𝑥 ∈ (𝑌filGen𝐵) ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
1614, 15syl5bb 271 . . . . . . 7 (𝐵 ∈ (fBas‘𝑌) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
17163ad2ant2 1076 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
18 imass2 5420 . . . . . . . . . . 11 (𝑦𝑥 → (𝐹𝑦) ⊆ (𝐹𝑥))
19 sstr2 3575 . . . . . . . . . . . . 13 ((𝐹𝑦) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝐴 → (𝐹𝑦) ⊆ 𝐴))
2019com12 32 . . . . . . . . . . . 12 ((𝐹𝑥) ⊆ 𝐴 → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2120ad2antll 761 . . . . . . . . . . 11 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2218, 21syl5 33 . . . . . . . . . 10 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (𝑦𝑥 → (𝐹𝑦) ⊆ 𝐴))
2322reximdv 2999 . . . . . . . . 9 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2423expr 641 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → ((𝐹𝑥) ⊆ 𝐴 → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2524com23 84 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝐵 𝑦𝑥 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2625expimpd 627 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥) → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2717, 26sylbid 229 . . . . 5 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2827rexlimdv 3012 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2913, 28impbid 201 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 ↔ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
3029anbi2d 736 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
311, 30bitrd 267 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  wss 3540  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  fBascfbas 19555  filGencfg 19556   FilMap cfm 21547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-fg 19565  df-fm 21552
This theorem is referenced by:  fmfg  21563  elfm3  21564  imaelfm  21565
  Copyright terms: Public domain W3C validator